摘要
本研究采用金属掺杂的方式调控氧空位导电细丝的电子结构以获得更好的器件性能。计算了HfO_(2)体系中四组氧空位的形成能,得到V_(O4)-V_(O23)-V_(O34)-V_(O46)最易形成的氧空位簇;分波电荷态密度进一步表明在[010]晶向上电荷聚集形成导电通道。另外,研究了Ag、Mg、Ni、Cu、Al、Ta、Ti掺杂对该缺陷体系电子结构的影响,显示Ni与其它金属相比,在共缺陷体系中最易形成,体系最稳定;V_(O)-Ni共缺陷体系中导电细丝最均匀,最高等势面值最大,证明导电细丝最易形成;V_(O)-Ni之间相互作用能为-2.335eV,表明缺陷相互吸引;金属Ni具有很强的局域电子能力。
In order to improve performance of Resistive Random Access Memory(RRAM)based on HfO_(2),a method of metal doping was used to tailor electronic structure of oxygen vacancy(V_(o))conductive filaments(CF).The formation energy of four groups of V_(o) cluster was calculated based on the density functional theory.The results shows V_(O4)-V_(O23)-V_(O34)-V_(O46)-is the easily formed CF’s in[010]direction.On the other hand,the CF with different metal doping(Ag,Mg,Ni,Cu,Al,Ta or Ti)revealed that the formation energy is the lowest,the isosurface value is the highest and the CF is the most uniform in the case of Ni doping.The interaction energy between CF and Ni impurity was -2.335 eV,which indicated that the two defects attracting each other.The new impurity levels produced between the Valence Band and Fermi level indicates Ni has a strong local electron capacity.Overall,these findings provide some theoretical guidance for optimizing forming voltage and ON/OFF ratio of RRAM devices.
作者
王菲菲
代月花
卢文娟
鲁世斌
汪海波
万丽娟
蒋先伟
WANG Feifei;DAI Yuehua;LU Wenjuan;LU Shibin;WANG Haibo;WAN Lijuan;JIANG Xianwei(Institute of Electronic and Information Engineering,Anhui University,Hefei 230601,China;Anhui Province Key Laboratory of Simulation and design for Electronic Information System,Hefei Normal University,Hefei 230601,China;Universities Joint Key Laboratory of Photoelectric Detection Science and Technology in Anhui Province,Hefei Normal University,Hefei 230601,China)
出处
《材料科学与工程学报》
CAS
CSCD
北大核心
2021年第3期445-451,共7页
Journal of Materials Science and Engineering
基金
安徽省高等学校自然科学研究资助项目(KJ2016A574)
安徽省高等学校自然科学研究重点资助项目(KJ2019A0714)
合肥师范学院校级质量工程资助项目(2018jy08)
电子信息系统仿真实验室仿真设计安徽省重点实验室开放基金资助项目(2020ZDSYSYB02)。
关键词
阻变存储器
氧空位
导电细丝
掺杂
第一性原理
RRAM
Oxygen vacancy
Conductive Filament
Doping
The first principles