期刊文献+

Daily CO_(2) Emission Reduction Indicates the Control of Activities to Contain COVID-19 in China 被引量:2

原文传递
导出
摘要 Lockdown measures are essential to containing the spread of coronavirus disease 2019(COVID-19),but they will slow down economic growth by reducing industrial and commercial activities.However,the benefits of activity control from containing the pandemic have not been examined and assessed.Here we use daily carbon dioxide(CO_(2))emission reduction in China estimated from statistical data for energy consumption and satellite data for nitrogen dioxide(NO_(2))measured by the Ozone Monitoring Instrument(OMI)as an indicator for reduced activities consecutive to a lockdown.We perform a correlation analysis to show that a 1%day-1 decrease in the rate of COVID-19 cases is associated with a reduction in daily CO_(2) emissions of 0.22%±0.02%using statistical data for energy consumption relative to emissions without COVID-19,or 0.20%±0.02%using satellite data for atmospheric column NO_(2).We estimate that swift action in China is effective in limiting the number of COVID-19 cases<100,000 with a reduction in CO_(2) emissions of up to 23%by the end of February 2020,whereas a 1-week delay would have required greater containment and a doubling of the emission reduction to meet the same goal.By analyzing the costs of health care and fatalities,we find that the benefits on public health due to reduced activities in China are 10-fold larger than the loss of gross domestic product.Our findings suggest an unprecedentedly high cost of maintaining activities and CO_(2) emissions during the COVID-19 pandemic and stress substantial benefits of containment in public health by taking early actions to reduce activities during the outbreak of COVID-19.
出处 《The Innovation》 2020年第3期24-36,共13页 创新(英文)
基金 the provision of funds fromthe National Natural Science Foundation of China(41877506) the Fudan’s Wangdao Undergraduate Research Opportunities Program(18107) the Chinese Thousand Youth Talents Program the Australia-China Centre for Air Quality Science and Management.
  • 相关文献

参考文献3

二级参考文献1

共引文献76

同被引文献18

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部