期刊文献+

基于行为特征分析的全身交互界面用户参与 被引量:7

Research on User Engagement of Whole-body Interface Based on Behavior Feature Analysis
原文传递
导出
摘要 针对全身交互界面用户参与的定量评估问题,提出基于行为特征分析的研究思路。利用Openpose获得用户身体关键点坐标并提取行为特征,对比不同全身交互界面和任务模式中行为特征的显著差异,以及客观行为特征与主观感知参与度的关系。发现客观行为特征与主观感知参与度具有相关性和互补性。用户行为特征在某些属性上可以指示用户主观感知的参与程度,但两者不具有替代关系,对涉及全身交互的用户参与评估需同时从客观行为和主观认知两个层面开展。VR界面中用户总体平均速度和感知参与度均显著高于Kinect界面,VR界面在支持用户认知和行为层面的用户参与具有显着优势;任务模式影响交互行为的选择,相较于休闲模式,生存模式的交互行为更加精细。 To study the quantitative evaluation of user engagement in whole-body interface,a method based on the extraction of behavioral feature is proposed.Using Openpose to obtain the coordinates of user’s body key points and to extract behavioral feature,comparing behavioral feature between different whole-body interfaces and task modes.Found that the average speed of interaction and questionnaire data are consistent and complementary.User behavior feature can indicate some attributes of user engagement,but there is no substitute relationship.The evaluation of user engagement needs to be carried out from both behavioral and cognitive levels.Compared with the Kinect interface,the VR interface has significant advantages in supporting user engagement in both cognition and behavior.Task mode affects the choice of interaction behavior.Compared with leisure mode,the interaction behavior of survival mode is more refined.
作者 吴永萌 支锦亦 李君 皮雪阳 WU Yongmeng;ZHI Jinyi;LI Jun;PI Xueyang(School of Architecture and Design,Southwest Jiaotong University,Chengdu 610097,China;School of Information Science and Technology,Southwest Jiaotong University,Chengdu 610097,China)
出处 《机械设计与研究》 CSCD 北大核心 2021年第3期177-181,共5页 Machine Design And Research
关键词 全身交互 用户参与 行为特征 Openpose 量化评估 whole-body interface user engagement behaviour feature openpose quantitative evaluation
  • 相关文献

参考文献3

二级参考文献40

  • 1李芳,何思俊,支锦亦,王超,向泽锐.基于AHP-熵权法的高速列车乘客车厢设计满意度评价[J].机械设计,2020,37(2):121-125. 被引量:22
  • 2李小雷,童水光.基于知识的产品虚拟设计方法及其实现[J].机械设计与研究,2005,21(2):9-11. 被引量:11
  • 3刘晓敏,檀润华.创新概念设计理念与虚拟设计实例分析[J].机械设计与研究,2005,21(5):16-18. 被引量:7
  • 4朱继玉,王西颖,王威信,戴国忠.基于结构分析的手势识别[J].计算机学报,2006,29(12):2130-2137. 被引量:26
  • 5Simon A. First person experience and usability of co located interaction in a projection-based virtual environment [C]// Proceedings of ACM Symposium on Virtual Reality Software and Technology. New York: ACM Press, 2005:23-30.
  • 6Mulder J D. Realistic occlusion effects in mirror Based co located augmented reality systems [C] //Proceedings of 1EEE Virtual Reality Conference. Los Alamitos: 1EEE: Computer Society Press, 2005:203-208.
  • 7Zhou F, Duh H B L, Billinghurst M. Trends in augmented reality tracking, interaction and display: a review of ten years of ISMAR [C] //Proceedings of the 7th IEEE/ACM International Symposium on Mixed and Augmented Reality. Los Alamitos: IEEgComDuter SocietvPress, 2008= 193-202.
  • 8Wang R Y, Popovid J. Real-time hand-tracking with a color glove [C] //Computer Graphics proceedings, Annual Conference Series, ACM SIGGRAPH. New York: ACM Press, 2009: Article No. 63.
  • 9Stauffer C, Grimson W E L. Adaptive background mixture models for real-time tracking [C] //Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Los Alamitns: IEEE Computer Society Press, 1999: 246-252.
  • 10Kim K, Chalidabhongse T H, Harwood D, et al. Background modeling and subtraction by eodehook construction [C]//Proceedings of International Conference on Image Processing. Piscataway: IEEE Signal Processing Society Press, 2004: 3061-3064.

共引文献28

同被引文献78

引证文献7

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部