期刊文献+

Virtual assembly framework for performance analysis of large optics

下载PDF
导出
摘要 Background A longstanding technological challenge exists regarding the precise assembly design and performance optimization of large optics in high power laser facilities,comprising a combination of many complex problems involving mechanical,material,and laser beam physics.Method In this study,an augmented virtual assembly framework based on a multiphysics analysis and digital simulation is presented for the assembly optimization of large optics.This framework focuses on the fundamental impact of the structural and assembly parameters of a product on its optical performance;three-dimensional simulation technologies improve the accuracy and measurability of the impact.Intelligent iterative computation algorithms have been developed to optimize the assembly plan of large optics,which are significantly affected by a series of constraints including dynamic loads and nonlinear ambient excitations.Results Finally,using a 410-mm-aperture frequency converter as the study case,we present a detailed illustration and discussion to validate the performance of the proposed system in large optics assembly and installation engineering.
出处 《Virtual Reality & Intelligent Hardware》 2020年第1期28-42,共15页 虚拟现实与智能硬件(中英文)
基金 the National Key Scientific Instrument and Equipment Development Project(2016 YFF 0101900) National Natural Science Foundation of China(51975322).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部