期刊文献+

基于BP神经网络的白洋淀水环境承载力研究 被引量:8

Research on the Water Environmental Carrying Capacity of Baiyangdian Watershed Based on BP Neural Networks
下载PDF
导出
摘要 为揭示流域社会经济、资源与生态对水环境承载力的影响程度,以白洋淀流域为研究对象,基于频次分析与主成分分析构建白洋淀流域水环境承载力评级指标体系,筛选出研究区水环境承载力指标12个。同时首次结合控制图及流域发展规划方法确定各项指标的阈值区间,建立白洋淀水环境承载力BP神经网络模型。结果表明,研究区2012、2013与2015年处于较弱承载状态,而2014、2016与2017年处于中等承载状态。评价结果与白洋淀流域实际发展趋势吻合,同时也表明未来人均GDP、地下水开采等将会给白洋淀流域水环境承载带来较大的压力。研究表明,结合控制图及流域发展规划方法可更精准地确定水环境承载力指标体系分级标准,同时基于BP神经网络模型可以准确有效地进行流域水环境承载力评价,可为流域的水环境与经济协调发展提供借鉴。 In order to reveal the effect of the social economy,resources and ecology of the watershed on the water environment carrying capacity,Baiyangdian Watershed is selected as the study object,based on the frequency analysis and principal component analysis to construct an evaluation index system for the water environment carrying capacity of the Baiyangdian Watershed,and twelve water environment carrying capacity indexes are selected.Meanwhile,the control chart and watershed development planning method are combined for the first time to determine the threshold interval of index,and the BP neural network model of water environmental carrying capacity suitable for Baiyangdian Watershed is established according to the evaluation the water environmental carrying capacity of Baiyangdian Watershed.The results show that 2012,2013 and 2015 were in a poor bearing state,while 2014,2016 and 2017 were in a medium-sized carrying state.The evaluation results are consistent with the actual development trend of Baiyangdian Watershed,and also indicate that factors such as per capita GDP and groundwater exploitation will bring heavy pressure to the water environment of Baiyangdian Watershed in the future.The study shows that the index system classification standard of water environment carrying capacity can be determined more accurately by combining the control chart and the watershed development planning method.Meanwhile,the evaluation of the watershed water environment carrying capacity can be carried out accurately and effectively based on the BP neural network model,which serve as a reference for the coordinated development of the watershed water environment and economy.
作者 杨延梅 向维 苏靖 陈文婷 傅雪梅 虞敏达 孙源媛 郑明霞 YANG Yan-mei;XIANG Wei;SU Jing;CHEN Wen-ting;FU Xue-mei;YU Min-da;SUN Yuan-yuan;ZHENG Ming-xia(School of River and Ocean Engineering,Chongqing Jiaotong University,Chongqing 400074,China;State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution,Chinese Research Academy of Environmental Sciences,Beijing 100012,China;School of Water Resources and Environment,China University of Geosciences(Beijing),Beijing 100083,China)
出处 《中国农村水利水电》 北大核心 2021年第7期61-66,71,共7页 China Rural Water and Hydropower
基金 国家水体污染控制与治理科技重大专项 大清河流域(白洋淀)水质目标综合管理示范研究项目(2018ZX07111004)。
关键词 白洋淀流域 水环境承载力 指标阈值 BP神经网络 Baiyangdian Watershed water environmental carrying capacity index threshold BP neural network
  • 相关文献

参考文献13

二级参考文献183

共引文献377

同被引文献101

引证文献8

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部