期刊文献+

ICPS入侵检测深度学习混合模型 被引量:3

Deep Learning Hybrid Model for ICPS Intrusion Detection
下载PDF
导出
摘要 针对工业信息物理系统面临的网络安全问题,研究了一种基于深度学习混合模型的入侵检测方案。该方案将基于深度信念网络的无监督学习策略与基于支持向量机的有监督学习策略相结合,以实现工业信息物理系统入侵检测的半监督学习。对原始数据进行归一化处理并采用深度信念网络进行数据降维后,利用支持向量机进行入侵检测。使用MATLAB工具进行仿真,对以Modbus作为通信协议的监控与数据采集系统的真实数据进行测试。结果表明,与深度信念网络、支持向量机等算法模型相比,深度学习混合模型能显著提高异常检测的准确度。 Aiming at the network security problem faced by industrial cyber physical systems(ICPS),an intrusion detection scheme based on the deep learning hybrid model is studied.The scheme combines the unsupervised learning strategy based on the deep belief network with the supervised learning strategy based on the support vector machine to realize semi-supervised learning of industrial cyber physical system intrusion detection.After the original data are normalized and the dimensionality of the data is reduced by the deep belief network,the support vector machine is used for intrusion detection.The MATLAB tool is used for simulation to test the real data of the supervisory control and data acquisition system with Modbus as the communication protocol.The simulation results show that compared with the models of the deep belief network,support vector machine and other algorithms,the deep learning hybrid model can significantly improve the accuracy of anomaly detection.
作者 金浩 孙子文 JIN Hao;SUN Zi-wen(School of Internet of Things,Jiangnan University,Wuxi 214122,China;Engineering Research Center of Internet of Things Technology Applications Ministry of Education,Jiangnan University,Wuxi 214122,China)
出处 《控制工程》 CSCD 北大核心 2021年第8期1708-1716,共9页 Control Engineering of China
基金 国家自然科学基金资助项目(61373126) 中央高校基本科研业务费专项资金资助项目(JUSRP51510)。
关键词 工业信息物理系统 深度信念网络 支持向量机 半监督 Industrial cyber physical system deep brief network support vector machine semi-supervised
  • 相关文献

参考文献7

二级参考文献102

  • 1卿斯汉,蒋建春,马恒太,文伟平,刘雪飞.入侵检测技术研究综述[J].通信学报,2004,25(7):19-29. 被引量:234
  • 2郭俊宏,谭伟璞,杨以涵,郭芳霞,任杰.电力系统故障定位原理综述[J].继电器,2006,34(3):76-81. 被引量:39
  • 3赵妍卉,王少荣.基于小波模极大值理论的HVDC输电线路行波故障定位方法的研究[J].继电器,2007,35(1):13-17. 被引量:28
  • 4陈友,程学旗,李洋,戴磊.基于特征选择的轻量级入侵检测系统[J].软件学报,2007,18(7):1639-1651. 被引量:78
  • 5叶世伟,史忠植.神经网络原理[M].北京:机械工业出版社,2006.
  • 6葛耀中.新型继电保护与故障测距原理与技术(第2版)[M].西安:西安交通大学出版社,2007.
  • 7Lee T S, Mumford D. Hierarchical Bayesian inference in the visual cortex[J]. Optical Society of America, 2003, 20(7): 1434-1448.
  • 8Rossi A F, Desimone R, Ungerleider L G. Contextual modulation in primary visual cortex of macaques[J]. J of Neuroscience, 2001, 21(5): 1689-1709.
  • 9Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507.
  • 10Dahl G E, Yu D, Deng L, et al. Large vocabulary continuous speech recognition with context-dependent DBN-HMMS[C]. Proc of IEEE Int Conf on Acoustics, Speech and Signal Processing. Prague, 2011:4688-4691.

共引文献195

同被引文献32

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部