期刊文献+

基于生成对抗网络的注入电流式热声成像逆问题研究 被引量:6

The Study on the Inverse Problem of Applied Current Thermo-Acoustic Imaging Based on Generative Adversarial Network
下载PDF
导出
摘要 注入电流式热声成像结合了电阻抗成像高对比度和超声成像高分辨率的优势,在生物医学成像领域具有广阔的应用前景。该成像方法激励效率高、检测信噪比强,但在较低频率的电磁激励下,重建目标体电导率的高分辨率图像仍然具有很大的挑战。该文提出一种基于生成对抗网络的电导率重建新方法,包含三个步骤:首先用维纳滤波反卷积,将超声探头输出的电信号还原为真实声信号;然后利用滤波反投影获得初始声源图像;最后将初始声源图像和电导率图像进行匹配,作为生成对抗网络的训练样本,构建用于电导率重建的深度学习模型。经理论分析与仿真研究发现,新方法通过引入深度神经网络,能够挖掘出蕴含在数据中的逆问题求解模型,进而重建高分辨率的电导率图像,且具有很强的抗干扰特性。新方法的提出为解决注入电流式热声成像的电导率重建问题提供了新思路。 Applied current thermo-acoustic imaging(ACTAI)has a prospect applications in medical imaging,with the advantages of high contrast of ecclectrical impedance tomography and high spatial resolution in ultrasound imaging.Although the imaging modality has high excitation efficiency and signal-to-noise ratio,there is still a great challenge on high resolution reconstruction of conductivity under low frequency electromagnetic excitation.In this paper,a new method for reconstructing the conductivity based on generative adversarial network is proposed.The proposed algorithm consists of the following three main steps:firstly,by using Wiener filtering deconvolution method,the original acoustic fields on the detected boundary are reconstructed by the acoustic signals originated from the ultrasonic transducers.And then the initial acoustic source image is obtained by the filtering back projection method.Finally,the initial acoustic source image are used as training samples and labels of a deep learning network,which is designed for the conductivity reconstruction.Theoretical analysis show that the method proposed in this paper can solve the inverse problem of the conductivity reconstruction by the machine learning models and obtain the accurate and stable images.This provides a new idea for solving the problem of conductivity reconstruction in the applied current thermo-acoustic imaging.
作者 郭亮 王祥业 姜文聪 Guo Liang;Wang Xiangye;Jiang Wencong(School of Control Science and Engineering China University of Petroleum(East China),Qingdao 266580 China)
出处 《电工技术学报》 EI CSCD 北大核心 2021年第S01期22-30,共9页 Transactions of China Electrotechnical Society
基金 中央高校自主创新科研计划(18CX02111A) 青岛市科技计划(19-6-2-60-cg) 中央高校自主创新科研计划(20CX05021A)资助项目。
关键词 注入电流式热声成像 逆问题 电导率重建 深度学习 生成对抗网络 Applied current thermo-acoustic imaging(ACTAI) inverse problem conductivity reconstruction deep learning generative adversarial network
  • 相关文献

参考文献11

二级参考文献90

  • 1李兴文,陈德桂,孙志强,李志鹏,纽春萍.交流接触器动态过程及触头弹跳的数值分析与实验研究[J].中国电机工程学报,2004,24(9):229-233. 被引量:59
  • 2荣命哲,娄建勇,王小华.永磁式接触器动触头动作特性仿真分析与试验研究[J].中国电机工程学报,2005,25(1):109-113. 被引量:72
  • 3张艳丽,谢德馨,白保东,夏平畴.一种永磁磁体外部特殊磁场区域的构建问题[J].电工技术学报,2006,21(10):1-6. 被引量:5
  • 4陶春静,宋涛,吴石增,阎静.微波激励热声成像中微波源参数选择的理论分析[J].北京生物医学工程,2007,26(1):22-26. 被引量:3
  • 5Stojadinovic A, Nissan A, Shriver CD, et al. Electrical impedance scanning as a new breast cancer risk stratification tool for young women[J]. J Surg Oncol, 2008,97(2): 112- 120.
  • 6Malich A, Bohm T, Facius M, et al. Differentiation of mammographically suspicious lesions: evaluation of breast ultrasound, MRI mananography and electrical impedance scanning as adjunctive technologies in breast cancer detection [ J ]. Clin Radiol, 2001,56: 278-283.
  • 7Liu Ruigang, Dong Xiuzhen, Fu Feng, et al. Multi-frequency parameter mapping of electrical impedance scanning using two kinds of circuit model[J]. Physiol Meas, 2007,28(7) : S85 - S100.
  • 8Zhen Cheng, Dong Xiuzhen, Fu Feng, et al. Breast cancer detection based on multi-frequency EIS measurement[A]. In: IEEE Engineering on Medical & Biology Conference[C]. Lyon, France: IEEE EMBS, 2007,1:4158 - 4160.
  • 9Saulnier GJ, Liu N, Tarnma C. An electrical impedance spectroscopy system for breast cancer detection. In : IEEE Engineering on Medical & Biology Conference[C]. Lyon, France: IEEE EMBS, 2007, 1: 4154- 4157.
  • 10Brenner RJ, Parisky Y. Alternative breast-imaging approaches[J]. Radiol Clin North Am, 2007, 45(5) :907 - 923.

共引文献107

同被引文献74

引证文献6

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部