期刊文献+

嵌入通道注意力的YOLOv4火灾烟雾检测模型 被引量:34

Firesmoke detection model based on YOLOv4 with channel attention
下载PDF
导出
摘要 为提高火灾烟雾检测模型的性能,以及避免繁琐的手工烟雾特征提取过程,本文提出一种基于卷积神经网络YOLOv4的火灾烟雾检测模型。该方法以CSPDarkNet53为主干网络,在主干网络的最后一层加入了13×13.9×9.5×5.1×1四个不同尺度的最大池化,多尺度特征融合中采用了PANet(Path Aggregation Network)以提高网络特征提取能力;为了增强网络预测头提取有效烟雾信息的能力,在网络预测头加入通道注意力网络。针对火灾烟雾数据集,候选框的尺寸使用K-means进行聚类以得到更加符合贴近火灾烟雾数据集的尺寸;由于本文仅识别火灾烟雾一种类别,所以精简损失函数,剔除分类误差,使算法收敛得更快。训练阶段使用了图像翻转、放缩和随机擦除等数据增强方法以降低过拟合的风险。实验结果表明,所提出的火灾烟雾检测模型精度高,其准确率达到92.5%,召回率达到87.7%,同时检测速度可达5.1帧/s,提高了火灾烟雾检测模型的性能。 To improve the precision and recall rate of fire smoke detection model in multi-scene fire smoke detection applications,and avoid the tedious manual smoke feature extraction process,a fire smoke detection model is proposed which is based on convolutional neural network YOLOv4.In the last layer of the backbone network,four different scales of maximum pooling are added:13×13,9×9,5×5,and 1×1.The multi-scale feature fusion uses PANet(Path Aggregation Network)to improve network feature extraction capabilities.In addition,a channel attention network is added to the network prediction head to enhance the ability of the YOLO Head to extract effective smoke information.For the fire smoke data set,the size of the candidate frame is clustered using the K-means algorithm to get a size closer to the fire smoke data set.Due to the identification of smoke,the loss function is simplified,the classification error is eliminated,and the algorithm converges faster.Data enhancement methods such as image flipping and random erasure are used in the training phase to reduce the risk of overfitting.Experimental results show that the fire smoke detection model has excellent performance.Its precision can reach 92.5%,Recall can reach 87.7%,and the detection speed can reach 5.1 frames/s,which improves the performance of fire smoke detection model in multi-scene fire smoke detection applications.
作者 谢书翰 张文柱 程鹏 杨子轩 XIE Shu-han;ZHANG Wen-zhu;CHEN Peng;YANG Zi-xuan(School of Information and Control Engineering, Xi′an University of Architecture and Technology, Xi′an 710048, China)
出处 《液晶与显示》 CAS CSCD 北大核心 2021年第10期1445-1453,共9页 Chinese Journal of Liquid Crystals and Displays
基金 陕西省自然科学基础研究计划资助项目(No.2020JM-489) 西安市科技计划项目(No.JZKD0010) 陕西省科协高端科技创新智库项目(No.18JT006)
关键词 火灾烟雾检测 YOLOv4 通道注意力网络 K-MEANS fire smoke detection YOLOv4 channel attention network K-means
  • 相关文献

参考文献12

二级参考文献86

  • 1袁非牛,廖光煊,张永明,刘勇,于春雨,王进军,刘炳海.计算机视觉火灾探测中的特征提取[J].中国科学技术大学学报,2006,36(1):39-43. 被引量:52
  • 2曾国荪.改善神经网络反向传播算法的训练时间[J].小型微型计算机系统,1996,17(11):69-72. 被引量:2
  • 3陈晓娟,卜乐平,李其修.基于图像处理的明火火灾探测研究[J].海军工程大学学报,2007,19(3):6-11. 被引量:15
  • 4袁非牛.基于运动累积和半透明的视频烟雾探测模型[J].数据采集与处理,2007,22(4):396-400. 被引量:7
  • 5Phillips III W, Shah M, Da V L N. Flame recognition JLn video [ C]//Proceedings of 5th IEEE Workshop on Applications of Computer Vision. Palm Springs, CA, USA : IEEE 2000 : 224- 229.
  • 6Ugur T B, Dedeoglu Y, Gudukbay U, et al. Computer vision based method for real- time fire and flame detection [ J ]. Pattern Recognition Letters, 2006, 27( 1): 49-58.
  • 7Celik T, Demirel H. Fire detection in video sequences using age-.neric color model [J]. Fire Safety Journal, 2009, 44(2) : 147- 158.
  • 8Yuan F N, Liao G X, Fan W C, et al. Vision based fire detec- tion using mixture gaussian model[ C ]//Proceedings of 8th IAF- SS 2005. Beijing, China: s. n. ,1575-1583.
  • 9Vieente J, Guillemant P. An image processing technique for au- tomatically detecting forest fire[ J. International Journal of Ther- mal Sciences, 2002, 41 ( 12 ) : 1113-1120.
  • 10Fujiwara N, Terada K. Extraction of a smoke region using fractal coding [ C ]//IEEE International Symposium on Communications and Information Technology. Sappom, Japan: IEEE, 2004, 659- 662.

共引文献172

同被引文献198

引证文献34

二级引证文献119

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部