摘要
Uncontrollable dendrite growth resulting from the non-uniform lithium ion(Li^(+))flux and volume expansion in lithium metal(Li)negative electrode leads to rapid performance degradation and serious safety problems of lithium metal batteries.Although N-containing functional groups in carbon materials are reported to be effective to homogenize the Li^(+)flux,the effective interaction distance between lithium ions and N-containing groups should be relatively small(down to nanometer scale)according to the Debye length law.Thus,it is necessary to carefully design the microstructure of N-containing carbon materials to make the most of their roles in regulating the Li^(+)flux.In this work,porous carbon nitride microspheres(PCNMs)with abundant nanopores have been synthesized and utilized to fabricate a uniform lithiophilic coating layer having hybrid pores of both the nano-and micrometer scales on the Cu/Li foil.Physically,the three-dimensional(3D)porous framework is favorable for absorbing volume changes and guiding Li growth.Chemically,this coating layer can render a suitable interaction distance to effectively homogenize the Li^(+)flux and contribute to establishing a robust and stable solid electrolyte interphase(SEI)layer with Li-F,Li-N,and Li-O-rich contents based on the Debye length law.Such a physical-chemical synergic regulation strategy using PCNMs can lead to dendrite-free Li plating,resulting in a low nucleation overpotential and stable Li plating/stripping cycling performance in both the Li||Cu and the Li||Li symmetric cells.Meanwhile,a full cell using the PCNM coated Li foil negative electrode and a LiFePO4 positive electrode has delivered a high capacity retention of~80%after more than 200 cycles at 1 C and achieved a remarkable rate capability.The pouch cell fabricated by pairing the PCNM coated Li foil negative electrode with a NCM 811 positive electrode has retained~73%of the initial capacity after 150 cycles at 0.2 C.
基金
This work was supported by the National Key R&D Program of China(No.2016YFF0204302)
the National Natural Science Foundation of China(Nos.51872305 and 52001320)
S&T Innovation 2025 Major Special Programme of Ningbo(No.2018B10081)。