期刊文献+

利用MC-ICP-MS测定铁同位素方法综述 被引量:4

A Review of MC-ICP-MS Fe Isotope Analytical Methods
下载PDF
导出
摘要 多接收电感耦合等离子体质谱(MC-ICP-MS)的应用已在金属稳定同位素分析方法上取得重大突破,促进了金属稳定同位素地球化学的快速发展。铁同位素作为一种新的同位素示踪体系,已广泛应用于主要的地球科学及其分支学科的研究中。目前,MC-ICP-MS对铁同位素的日常测定精度可以达到±0.03‰,但化学纯化和仪器分馏引起的质量偏差很容易引起较大的分析误差。因此,准确获取天然样品的铁同位素组成数据仍然是一个挑战。笔者系统回顾了铁同位素分析技术的发展,详细描述了铁同位素分析过程,包括化学纯化过程、仪器质量歧视校正和基质效应的规避等。 The use of multi-collector inductively coupled plasma mass spectrometry(MC-ICP-MS)paved the way in the stable isotope analysis of metals,promoting the rapid development of non-traditional stable isotope geochemistry,among which,Fe isotope has received the greatest attention.This surge of study has been fueled largely by the redox-sensitive nature of iron as well as its availability in life.The research on the distribution and isotopic compositions of iron has covered almost all sub-branches of earth science,ranging from biochemistry to geochemistry.The MC-ICP-MS instrument has been demonstrated to be very efficient in determining trace element compositions in a wide variety of applications.However,many questions,such as chemical purification,mass bias correction and efficiently avoid of matrix effects,remain challenging.
作者 霍金晶 韩延兵 HUO Jinjing;HAN Yanbing(School of Resources and Environmental engineering, Hefei University of Technology, Hefei 230009, Anhui,China;Xi'an Center of China Geological Survey, Northwest China Center for Geoscience Innovation, Xi'an 710054, Shaanxi,China)
出处 《西北地质》 CAS CSCD 北大核心 2021年第4期280-289,共10页 Northwestern Geology
基金 国家自然科学基金项目“大别苏鲁造山带超高压变质大理岩及其包裹榴辉岩的Mg同位素地球化学”(41703006) 中央高校基本科研业务费专项项目“大陆风化过程中的K同位素地球化学行为研究”(JZ2019HGTB0071)。
关键词 铁同位素 多接收电感耦合等离子体质谱 质量歧视校正 同位素分馏 基质效应 Fe isotope MC-ICP-MS mass bias calibration isotope fractionation matrix effects
  • 相关文献

参考文献2

二级参考文献146

  • 1Beard B L, Johnson C M. High precision iron isotope meas- urements of terrestrial and lunar materials[J]. Geochimica et Cosmochimica Acta, 1999, 63: 1653-1660.
  • 2Johnson C M, Beard B L, Roden E E. The iron isotope fin- gerprints of redox and biogeochemical cycling in modern and ancient Earth[J]. Annual Review of Earth and Planetary Sci- ences, 2008, 36: 457-493.
  • 3Templeton A S. Geomicrobiology of iron in extreme environ- ments[J]. Elements, 2011, 7: 95-100.
  • 4Konhauser K O, Kappler A, Roden E E. Iron in microbial metabolisms[J]. Elements, 2011, 7: 89-93.
  • 5Belshaw N S, Zhu X K, Guo Y, et al. High precision meas- urement of iron isotopes by plasma source mass spectrometry [J]. International Journal of Mass Spectrometry, 2000, 197: 191-195.
  • 6Zhu X K, Guo Y, Williams R J P, et al. Mass fractionation processes of transition metal isotopes[J]. Earth and Planeta- ry Science Letters, 2002, 200: 47-62.
  • 7Hoers J. Stable Isotope Geochemistry[M]. Berlin: Springer, 2009 : 1-285.
  • 8Anbar A D. Iron stable isotopes: Beyond biosignatures[J]. Earth and Planetary Science Letters, 2094, 217: 223-236.
  • 9Beard B L, Johnson C M. Fe isotope variations in the modern and ancient Earth and other planetary bodies[J]. Reviews in Mineralogy & Geochemistry, 2004, 55: 319-357.
  • 10Johnson C M, Beard B L. Isotopic constraints on biogeo- chemical cycling of Fe[J]. Reviews in Mineralogy & Geo- chemistry, 2004, 55: 359-408.

共引文献28

同被引文献38

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部