期刊文献+

大数据技术在动车组故障预警中的应用 被引量:4

Application of Big Data Technology in the EMU Fault Early Warning
下载PDF
导出
摘要 为提前识别动车组运行过程中的故障隐患,文章基于故障预测及健康管理理论,通过整合动车组不同场景的多源异构数据,构建“车-地”一体化大数据平台;并将设备故障机理与人工智能算法相结合,构建一种动车组关键部件故障预警预测模型,以部件关键物理特性来反映其工作状态并提前识别潜在故障。通过大数据平台及牵引电机的故障预警及温度预测模型的应用,CR400AF型复兴号动车组牵引电机故障率显著下降,由平均每百万公里0.5件降至约平均每百万公里0.1件。 In order to identify potential fault hazards in the operation of EMU in advance,based on the theory of prognostics health management,this paper constructs a vehicle-ground integrated big data platform by integrating multi-source heterogeneous data of different scenarios of the EMU.It uses a method of combining equipment fault mechanism and artificial intelligence algorithm to construct a fault early warning and prediction model of key components of EMU,which reflects the working status of a component with its key physical properties and identify potential faults in advance.Through the application of the big data platform and the traction motor fault early warning and temperature prediction model,traction motor fault rate of CR400AF Fuxing EMU decreased significantly from 0.5 pieces/10^(6) km to about 0.1 pieces/10^(6) km.
作者 吴臻易 WU Zhenyi(CRRC Qingdao Sifang Co.,Ltd.,Qingdao,Shandong 266111,China)
出处 《控制与信息技术》 2021年第5期91-96,共6页 CONTROL AND INFORMATION TECHNOLOGY
基金 山东省重点研发计划(国际科技合作)(2019GHZ004)。
关键词 动车组 大数据 故障预警 数字仿真 神经网络 EMU big data fault warning digital simulation neural network
  • 相关文献

参考文献7

二级参考文献51

  • 1马少坡.动车组牵引计算仿真研究[J].铁道建筑技术,2013(S1):243-246. 被引量:8
  • 2雷亚国,何正嘉,訾艳阳,胡桥.基于特征评估和神经网络的机械故障诊断模型[J].西安交通大学学报,2006,40(5):558-562. 被引量:39
  • 3胡桥,何正嘉,张周锁,訾艳阳,雷亚国.基于提升小波包变换和集成支持矢量机的早期故障智能诊断[J].机械工程学报,2006,42(8):16-22. 被引量:44
  • 4Roger A H,Charles R J.矩阵分析[M].杨奇,译.北京:机械工业出版社,2005.1~154.
  • 5高惠璇.统计计算[M].北京:北京大学出版社,2005.
  • 6Fisher R A.The use of multiple measurements in taxonomic problems[J].Ann of Eugenics,1936,7:179-188
  • 7Wang Huiwen,Liu Qiang.Forecast modeling for rotations of principal axes of multi-dimensional data set[J].Computational Statistics & Data Analysis,1998,27(3):345-35
  • 8HUANG N E, SHEN Z, LONG S R, et al. The Empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J].Proceedings of the Royal Society of London, 1998, 454(1): 903-995.
  • 9YANG B S, HAN T, AN J L. ART-KOHONEN neural network for fault diagnosis of rotating machinery [J]. Mechanical Systems and Signal Processing, 2004, 18.. 645-657.
  • 10YANG B S, KIM K J. Application of Dempster-Shafer theory in fault diagnosis of induction motors using vibration and current signals [J]. Mechanical Systems and Signal Processing, 2006, 20:403-420.

共引文献514

同被引文献24

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部