期刊文献+

一种基于局部表征的面部表情识别算法 被引量:7

Facial expression recognition based on local representation
下载PDF
导出
摘要 表情是人类内心情感变化的重要体现。当前表情识别方法通常依赖面部全局特征进行处理,忽略局部特征提取。心理学家指出,不同面部表情对应不同的局部肌肉运动区域,以此为动机,提出一种基于局部表征的表情识别算法,简称EAU-CNN。为提取面部的局部特征,该文首先根据获取的人脸68个特征点将整体面部图像划分成43个子区域,随后选择肌肉运动区域与面部显著器官所覆盖的8个局部候选区域作为卷积神经网络的输入。为均衡局部候选区域的特征,EAU-CNN采用8个并行的特征提取分支,每个分支支配不同维全连接层。分支的输出按照注意力自适应地连接,以突出不同局部候选区域的重要程度。最后经Softmax函数,将表情分为中性、愤怒、厌恶、惊讶、高兴、悲伤和恐惧七类。该文在CK+、JAFFE、自定义大型FED数据集上对算法进行了评估实验,所提算法平均准确率分别为99.85%、96.61%、98.29%。该评价指标超过S-Patches算法6.01%、10.17%、6.09%,结果表明局部表征能够提升表情识别性能。 Expression is an important embodiment of human inner emotion change.Current expression recognition methods usually rely on global facial features,ignoring local features extraction.Psychologists point out that different facial expressions correspond to different regions of local muscle movement.In this paper,we propose an expression recognition algorithm based on local representation,referred to as EAU-CNN.In order to extract the local features of the face,the whole face image is first divided into 43 sub-regions according to the 68 feature points of the face.Then,8 local candidate regions covered by the muscle motion region and the facial salient organs are selected as the input of the convolution neural network.In order to balance the features of local candidate regions,the EAU-CNN adopts 8 parallel feature extraction branches,each of which dominates the full connected layer of different dimensions.The outputs of the branches are adaptively connected in terms of attention to highlight the importance of different local candidate regions.Finally,the expressions are divided into 7 categories:neutral,angry,disgusted,surprised,happy,sad and afraid by the Softmax function.In this paper,the algorithm is evaluated on CK+,JAFFE and custom FED datasets.The average accuracy of the proposed algorithm is 99.85%,96.61%and 98.6%,respectively.The evaluation index is 6.01%,10.17%,6.09%higher than that of the S-Patches algorithm.The results show that local representation can improve the performance of emotional recognition.
作者 陈昌川 王海宁 黄炼 黄涛 李连杰 黄向康 代少升 CHEN Changchuan;WANG Haining;HUANG Lian;HUANG Tao;LI Lianjie;HUANG Xiangkang;DAI Shaosheng(School of Communication and Information Engineering,Chongqing University of Posts and Telecommunications,Chongqing 400065,China;School of Information Science and Engineering,Shandong University,Qingdao 266000,China)
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2021年第5期100-109,共10页 Journal of Xidian University
基金 重庆市研究生教育教学改革研究重点项目(yjg192019) 国家自然科学基金(61671095,61702065,61701067,61771085) 企业项目驾驶员健康监测(E021E2021008)。
关键词 表情识别 运动单元分区 卷积神经网络 损失函数 expression recognition motion unit partition convolutional neural network loss function
  • 相关文献

参考文献7

二级参考文献75

  • 1刘晓旻,谭华春,章毓晋.人脸表情识别研究的新进展[J].中国图象图形学报,2006,11(10):1359-1368. 被引量:62
  • 2隋雪,任延涛.面部表情识别的即时加工过程[J].心理学报,2007,39(1):64-70. 被引量:28
  • 3LOH M P, WONG Ya-Pling, WONG Chee-Onn. Facial expression recognition for e-learning systems using Gabor wavelet & neutral network [ C ]// Proceedings of the Sixth International Confer- ence on Advanced Learning Technologies. Netherlands: IEEE Computer Society, 2006:523-525.
  • 4KOTSIA I, NIKOLA1DIS N, PITAS I. Fusion of geometrical and texture information for facial expression recognition [ EB/OL ]. (2006-04-13) [ 2010-03-01 ]. http://ieeexplore, ieee. org/xpls/ abs all.jsp? arnumber =4107113 .
  • 5ALEKSIC P S, KATSAGGELOS A K. Automatic facial expression recognition using facial animation parameters and nmhistream HMMs [J]. IEEE Transactions on Information Forensics and Security, 2006, 1(1) : 3-11.
  • 6PANDZIC I S, FORCHHEIMER R. MPEG4 Facial Animation: The Standard, Implementation And Applications L M ]. New York, NY, USA: ohn Wiley & Sons, Inc, 2003.
  • 7YANG Y, WANG G, CHEN P. Feature Selection in Audiovisual Emotional Recognition Based on Rough Set Theory [ J ]. Transactions on Rough Sets VII,2007 : 283-294.
  • 8KANADE T, CHON J, TIAN Y. Comprehensive database for facial expression analys [ EB/OL ]. ( 2000-03-20 ) [ 2010-03-02 ]. http://ieeexplore, ieee. org/xpls/absall. jsp? arnumber = 840611.
  • 9YONS M J. The Japanese Female Facial Expression (JAFFE) Database [ EB/OL]. (1998-12-20) [ 2010-02-27 ]. http ://www. ntis. atr. co. jp/N mlyons/jaffe, html.
  • 10EKMAN P. Facial Expression and Emotion. American Psychologist [ EB/OL]. ( 1993-04-15 ) [ 2010-02-25 ]. http://www, ncbi. nlm. nih. gov/pubmed/8512154 Am Psychol.

共引文献161

同被引文献54

引证文献7

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部