摘要
目标的幅值信息可提供更多精确的目标和杂波似然函数信息,结合其对多目标进行跟踪可有效改善传感器的检测跟踪性能,构造了一种实际可行的结合目标幅值信息的辅助粒子PHD(AI-AP-PHD)滤波方法。该方法首先对目标状态向量和量测向量进行扩展,然后通过扩展的动态方程和量测方程实现系统的预测和更新,同时给出多目标的数量和状态估计。仿真结果表明,该方法非常适应于目标信噪比未知的情况,且性能优于传统的PHD滤波方法。
The amplitude information of target can provide more accurate target and false-alarm likelihoods,which can be used to improve the performance of multi-target detection and tracking.In this paper,a practical and feasible auxiliary particle probability hypothesis density filter combined with target amplitude information(AI-AP-PHD)is proposed.Firstly,the target state vector and measurement vector are expanded,and then the extended dynamic equation and measurement equation are used to realize the prediction and update of system,the number and state estimation of multi-target are given simultaneously in the end.The simulation results show that the proposed method is very suitable for the situation of unknown target SNR,and perform well than the traditional PHD filter method.
作者
谭顺成
韩芳林
于洪波
TAN Shuncheng;HAN Fanglin;YU Hongho(Institute of Infonnation Fusion Technology,Naval Aeronautical University,Shandong Yantai 264001,China;Nanjing Research Institute of Klectronic Technology,Nanjing 210039,China)
出处
《弹箭与制导学报》
北大核心
2021年第4期90-94,共5页
Journal of Projectiles,Rockets,Missiles and Guidance
基金
国家自然科学基金(61671462,61731023)资助。
关键词
辅助粒子滤波
概率假设密度滤波
幅度信息
auxiliary particle filter
probability hypothesis density filter
amplitude information