期刊文献+

面向建模误差PDF形状与趋势拟合优度的动态过程优化建模 被引量:4

Optimized Modeling of Dynamic Process Oriented Towards Modeling Error PDF Shape and Goodness of Fit
下载PDF
导出
摘要 本文提出一种新的数据驱动建模思路及方法,即面向建模误差概率密度函数(Probability density function,PDF)形状与趋势拟合优度(相似度)的动态过程多目标优化建模方法.首先,针对均方根误差(Root mean square error,RMSE)等常规一维性能指标不能完全刻画建模误差在时间和空间二维随机动态特性的问题,引入PDF指标来对动态过程的建模误差在时间和空间进行二维尺度的全面刻画和评价,并采用核密度估计技术对关于时间的建模误差序列的PDF进行估计;其次,为了刻画动态过程数据建模的拟合趋势,进一步引入趋势拟合优度指标,从而构造综合描述数据建模误差PDF形状与趋势拟合相似性的多目标性能指标;在此基础上,采用NSGA-II算法优化数据模型的参数集,获取一大类满足上述多目标性能优化的智能模型参数解.数值仿真及工业数据验证表明,所提方法的建模误差PDF逼近设定的期望PDF,并且模型输出与样本数据拟合趋势接近,好于常规最小化一维RMSE指标的数据建模方法. This paper proposes a novel data-driven modeling method,which is a multi-objective optimized modeling method for dynamic process oriented towards modeling error probability density function(PDF)shape and goodness of fit(similarity).First,aiming at the problem that the conventional modeling performance indicators such as the root mean square error(RMSE)cannot fully characterize the two-dimensional stochastic dynamic characteristics of modeling errors.The PDF index is introduced to comprehensively characterize and evaluate the modeling errors of dynamic systems in two dimensions on time and space,while the kernel density estimation technology is used to estimate the PDF of modeling error sequence.Second,in order to characterize the fitting trend of dynamic process data modeling,the goodness of fit is further introduced to construct a multi-objective performance indicator that comprehensively describes the data modeling error PDF shape and trend fitting similarity.Based on this,the parameter set of the data model is optimized using the NSGA-II algorithm to obtain the optimized parameter solutions for a large class of intelligent models.Finally,numerical simulation and industrial data verification show that the modeling error PDF of the proposed method approximates the set target PDF,and the model output is close to the actual data fitting trend,which is better than the conventional data modeling methods of minimizing the one-dimensional RMSE index.
作者 周平 赵向志 ZHOU Ping;ZHAO Xiang-Zhi(State Key Laboratory of Synthetical Automation for Process Industries,Northeastern University,Shenyang 110819)
出处 《自动化学报》 EI CAS CSCD 北大核心 2021年第10期2402-2411,共10页 Acta Automatica Sinica
基金 国家自然科学基金项目(61890934,61790572) 辽宁省‘兴辽英才计划’项目(XLYC1907132) 央高校基本科研业务费项目(N180802003)。
关键词 建模误差 PDF 拟合优度 数据建模 核密度估计 多目标优化 污水处理 Modeling error PDF goodness of fit data modeling kernel density estimation(KDE) multi-objective optimization sewage treatment
  • 相关文献

参考文献4

二级参考文献33

  • 1陆宁云,王福利,高福荣,王姝.间歇过程的统计建模与在线监测[J].自动化学报,2006,32(3):400-410. 被引量:61
  • 2ZHANG R D, XUE A K , WANG J Z. Neural network based iterative learning predictive control design for mechatronic systems with isolated nonlinearity [ J ]. Jour- nal of Process Control, 2009,19 ( 1 ) :68-74.
  • 3ZHANG J. Batch-to-batch optimal control of a batch po- lymerisation process based on stacked neural network models [ J ]. Chemical Engineering Science, 2008, 63 (5) :1273-1281.
  • 4XIONG ZH H, ZHANG J. Neural network model-based on-line re-optimisation control of fed-batch processes using a modified iterative dynamic programming algorithm [ J ]. Chemical Engineering and Processing, 2005,44 (4) : 477-484.
  • 5ZHANG J. Modeling and optimal control of batch proces- ses using recurrent neuro-fuzzy networks [ J 1. IEEE Transactions on Fuzzy Systems, 2005,13 ( 4 ) :417-427.
  • 6MACGREGOR J F, JAECKLE C, KIPARISSIDES C, et al. Process monitoring and diagnosis by muhiblock PKS methods[J]. AIChE Journal,1994,40(5):826-838.
  • 7ZHANG J, MORRIS A J, MARTIN E B, et al. Predic- tion of polymer quality in batch polymerisation reactors u- sing robust neural networks [ J ]. Chemical Engineering Journal, 1998,69 ( 2 ) : 135-143.
  • 8NOMIKOS P, MACGREGOR J F. Monitoring batch processes using multiway principal component analysis [J]. American Institute of Chemical Engineers Journal, 1994,40 ( 8 ) : 1361-1375.
  • 9DING J L, CHAI T Y. Offline modeling for product qual- ity prediction of mineral processing using modeling error PDF shaping and entropy minimization [ J ]. IEEE trans- actions on neural networks, 2011, 22(3) : 408-419.
  • 10KARNY M. Towards fully probabilistic control design [ J]. Automatic, 1996,32(12) : 1719-1722.

共引文献34

同被引文献36

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部