摘要
针对实测的主轴位移信号存在噪声污染的问题,提出一种稀疏表征特征提取算法(简称稀疏算法),该算法包括字典集构造和稀疏系数求解两个步骤:根据转子信号的周期性特点构造余弦字典,采用匹配追踪算法根据内积最大原则求解稀疏系数。采用该算法对低信噪比仿真信号中的单个频率和多个频率成分分别进行提取,提取信号的波形与对应的理想信号波形几乎完全重合,从而验证了所提算法的有效性。将此稀疏算法用于大型滑动轴承试验台转子的轴心轨迹提纯,效果优于谐波小波算法。采用笔者提出的算法得到的轴心轨迹清晰、集中,成功识别了转子的晃荡以及不对中状态。此外,该算法同样适用于其他旋转机械的状态识别。
To solve the problem of noise pollution in the measured spindle displacement signals,a sparse representation feature extraction algorithm(sparse algorithm for short)is proposed on the basis of the sparse representation algorithm theory. The algorithm consists of two steps:constructing the dictionary set and solving the sparsity coefficient,for constructing the cosine dictionary according to the periodic characteristics of the rotor signal,and for solving the sparsity coefficient according to the maximum inner product principle by using the matching pursuit algorithm. The proposed algorithm is used to extract single frequency and multiple frequency components of low SNR simulation signals,and each the extracted signal waveform almost completely coincides with the corresponding ideal one,thus verifying the effectiveness of the proposed algorithm. Then,it is used to purify the axis trajectories of the rotor of the large-scale sliding bearing test bed,and the result is better than harmonic wavelet algorithm. The axis orbits obtained by the proposed algorithm are clear and concentrated. Furthermore,the friction and misalignment faults of the rotor are successfully identified. In addition,the proposed algorithm is also suitable for the state recognition of other rotating machinery.
作者
郭明军
李伟光
杨期江
赵学智
GUO Mingjun;LI Weiguang;YANG Qijiang;ZHAO Xuezhi(School of Mechanical and Automotive Engineering,Guangxi University of Science and Technology Liuzhou,545616,China;School of Mechanical&Automotive Engineering,South China University of Technology Guangzhou,510640,China;School of Marine Engineering,Guangzhou Maritime University Guangzhou,510725,China)
出处
《振动.测试与诊断》
EI
CSCD
北大核心
2021年第5期919-925,1033,共8页
Journal of Vibration,Measurement & Diagnosis
基金
国家自然科学基金资助项目(51875205,51875216)
广东省自然科学基金资助项目(2018A030310017)
广东省教育厅资助项目(2017KQNCX145)
广州市科技计划资助项目(201904010133)。
关键词
滑动轴承
特征提取
稀疏表征
匹配追踪
轴心轨迹
sliding bearing
feature extraction
sparse representation
matching pursuit
axis trajectory