期刊文献+

基于双视卷积神经网络的输电线路自动巡检 被引量:21

Research on automatic inspection of transmission line based on cross-view convolution neural network
下载PDF
导出
摘要 卷积神经网络算法被广泛应用于输电线路自动巡检领域,但传统卷积神经网络电力缺陷识别模型的泛化能力较差。为此,提出一种融合双角度图像信息的卷积神经网络检测算法(CVR-RCNN),其利用2个视角可见光图像识别输电线路的常见缺陷。经实验测试,CVR-RCNN模型具有良好的鲁棒性,受试者工作特性(ROC)曲线下面积(AUC)值高达0.927,缺陷检测准确度较传统算法有显著提高。因此,CVR-RCNN能明显改善电力缺陷检测效果,可为无人机自动巡检输电线路提高准确稳定的算法架构。 The convolutional neural network algorithm is widely applied in the automatic inspection of transmission lines.However,the generalization ability of traditional convolutional neural network power defect-recognition model is not ideal.Under the background,this paper proposes a cross-view relation region convolutional neural network(CVR-RCNN)detection algorithm that integrates dual-angle image information,which utilizes two-view visible light images to identify typical defects in transmission lines.The testing shows that the CVR-RCNN model has good robustness.The area under curve(AUC)value of the receiver operating characteristic(ROC)curve is as high as 0.927,and the defect detection accuracy is significantly improved compared with traditional algorithms.Therefore,CVR-RCNN can significantly improve power defect detection and improve the accuracy and stability of the algorithm architecture for the automatic inspection of transmission lines by UAVs.
作者 戴永东 王茂飞 唐达獒 毛锋 仲坚 倪莎 DAI Yongdong;WANG Maofei;TANG Daao;MAO Feng;ZHONG Jian;NI Sha(Taizhou Electric Power Company of State Grid,Taizhou 225300,China;Allcorehatress(Beijing)Technology Co.,Ltd.,Beijing 100089,China)
出处 《电力科学与技术学报》 CAS 北大核心 2021年第5期201-210,共10页 Journal of Electric Power Science And Technology
基金 国网江苏省电力有限公司科技项目(5500-202018082A-0-0-00)。
关键词 无人机巡检 输电线路缺陷 深度学习 卷积神经网络 Unmanned aerial vehicle inspection transmission line defects deep learning convolutional neural n etworks
  • 相关文献

参考文献12

二级参考文献106

共引文献402

同被引文献300

引证文献21

二级引证文献120

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部