摘要
针对现有的算法对于高密度脉冲噪声的去除缺乏有效性和鲁棒性,难以有效地保持和恢复图像的边缘和细节结构,提出了一种小波检测的二次迭代修剪均值滤波方法。方法充分利用脉冲噪声的特征以及小波阈值去噪图像的高度相关性,根据灰度最值与小波阈值去噪图像进行噪声检测,先后分别用3×3和5×5邻域的迭代修剪均值滤波对噪声像素进行恢复。实验结果显示,相对于现有的最新提出的方法,所提出的方法获得更高的PSNR和EPI值,以及更好的视觉效果,具有优越的去噪性能和更好的细节结构保持能力。
Aiming at the existing methods being short of effectiveness and robustness for high density impulse noise removal,and failing to preserve and restore the edges and detail structures of image,a twice iterative trimmed mean filter with wavelet detection is proposed.This method takes full benefit of characteristic of impulse noise and the highly correlation of wavelet denoising image,identifies the noisy pixel with extreme intensity values and wavelet denoising image,and uses the iterative trimmed mean filter with 3×3 and 5×5 neighborhood successfully for noisy pixel restoration.The experimental results show that in comparison to existing methods proposed very recently,the proposed method achieves higher PSNR and EPI values,and better visual perception,showing superior capability in denoising and detail structure preservation.
作者
邓春华
周勇
DENG Chunhua;ZHOU Yong(School of Software and Blockchain,Jiangxi University of Applied Science,Nanchang 330022,China;School of Computer Information Engineering,Jiangxi Normal University,Nanchang 330022,China)
出处
《光学技术》
CAS
CSCD
北大核心
2021年第6期741-746,共6页
Optical Technique
基金
国家自然科学基金(61562063)
江西省教育科学“十四五”规划2021年度课题(21YB286)。
关键词
图像去噪
修剪中值滤波
小波检测
迭代修剪均值滤波
image denoising
trimmed median filter
wavelet detection
iterative trimmed mean filter