期刊文献+

基于多变量的辛烷值损失预测与优化模型的构建与分析 被引量:1

Construction and Analysis of Octane Loss Prediction and Optimization Model Based on Multivariate
原文传递
导出
摘要 提升汽油质量的关键是在尽量保证辛烷值(RON)含量不变的前提下,降低汽油中的硫、烯烃含量.然而,在汽油清洁化过程中,现有的脱硫降烯技术,不可避免地会降低汽油辛烷值的含量.人们尝试过基于数据关联或机理的方法对降低汽油辛烷值损失的问题进行建模,但实际的效果并不理想.因此,寻求一种合适的辛烷值损失优化模型对提升汽油的燃烧性能和企业的经济效益具有重要意义.对所构建模型进行了检验与评价,并结合模型的预测结果对模型进行了优缺点评价. The key to improving gasoline quality is to reduce the sulfur and olefin content in gasoline while keeping the octane number(RON)content unchanged as much as possible.However,in the process of gasoline cleaning,the existing desulfurization and olefin reduction technology will inevitably reduce the octane content of gasoline.People have tried to model the problem of reducing gasoline octane loss based on data association or mechanism,but the actual effect is not ideal.Therefore,seeking a suitable octane loss optimization model in this paper is of great significance to improve the combustion performance of gasoline and the economic benefits of enterprises.In this paper,the constructed model is tested and evaluated,and the advantages and disadvantages of the model are evaluated based on the prediction results of the model.
作者 徐佳奇 龚泯宇 盛勇杰 王义康 XU Jia-qi;GONG Min-yu;SHENG Yong-jie;WANG Yi-kang(Metrology Test Engineering,China Jiliang University,Hangzhou 310018,China;School of Science,China Metrology University,Hangzhou 310018,China)
出处 《数学的实践与认识》 2021年第23期126-135,共10页 Mathematics in Practice and Theory
基金 浙江省高等教育“十三五”教学改革研究项目(jg20190201)。
关键词 辛烷值损失 Lasso线性回归 随机森林 灰色关联分析 支持向量回归 模拟退火算法 octane loss Lasso linear regression random forest grey relational analysis support vector regression simulated annealing algorithm
  • 相关文献

参考文献3

二级参考文献29

共引文献10

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部