摘要
提出了一种基于多模态融合的人群流量预测算法(multimodal fusion for crowd flow prediction,MFCFP)。首先使用图卷积算子来探索区域之间的相关性以建立多模态,不同的模态可以捕捉不同的影响因素。然后进行多模态融合,并将带有注意力机制的基于图卷积神经网络应用于本文模型,以更好地建立相关区域关联。在真实数据集的实验证明了所提模型可以准确地预测人群活动流量。
A multimodal fusion based crowd flow prediction algorithm called multimodal fusion for crowd flow prediction(MFCFP)was proposed.Firstly,the graph convolution operator was used to explore the correlation between regions to establish multi-modality.Different modalities could capture different influencing factors.Then,multi-modal fusion was performed,and the graph-based convolutional neural network with attention mechanism was applied to the model to better establish the correlation of related regions.Finally,the experiments on the real Shanghai data set proved that the proposed model could accurately predict the flow of crowd activities.
作者
刘玉强
顾晶晶
孙明
凌超
LIU Yuqiang;GU Jingjing;SUN Ming;LING Chao(School of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, China)
出处
《郑州大学学报(理学版)》
北大核心
2022年第1期25-31,共7页
Journal of Zhengzhou University:Natural Science Edition
基金
国家自然科学基金项目(62072235)
南京航空航天大学2020研究生创新基地开放基金项目(Kfjj20191605)。