期刊文献+

The biological applications of DNA nanomaterials:current challenges and future directions 被引量:5

原文传递
导出
摘要 DNA,a genetic material,has been employed in different scientific directions for various biological applications as driven by DNA nanotechnology in the past decades,including tissue regeneration,disease prevention,inflammation inhibition,bioimaging,biosensing,diagnosis,antitumor drug delivery,and therapeutics.With the rapid progress in DNA nanotechnology,multitudinous DNA nanomaterials have been designed with different shape and size based on the classic Watson–Crick base-pairing for molecular self-assembly.Some DNA materials could functionally change cell biological behaviors,such as cell migration,cell proliferation,cell differentiation,autophagy,and anti-inflammatory effects.Some single-stranded DNAs(ssDNAs)or RNAs with secondary structures via self-pairing,named aptamer,possess the ability of targeting,which are selected by systematic evolution of ligands by exponential enrichment(SELEX)and applied for tumor targeted diagnosis and treatment.Some DNA nanomaterials with three-dimensional(3D)nanostructures and stable structures are investigated as drug carrier systems to delivery multiple antitumor medicine or gene therapeutic agents.While the functional DNA nanostructures have promoted the development of the DNA nanotechnology with innovative designs and preparation strategies,and also proved with great potential in the biological and medical use,there is still a long way to go for the eventual application of DNA materials in real life.Here in this review,we conducted a comprehensive survey of the structural development history of various DNA nanomaterials,introduced the principles of different DNA nanomaterials,summarized their biological applications in different fields,and discussed the current challenges and further directions that could help to achieve their applications in the future.
出处 《Signal Transduction and Targeted Therapy》 SCIE CSCD 2021年第11期3202-3229,共28页 信号转导与靶向治疗(英文)
基金 This work was supported in part by National Key R&D Program of China(Grant Nos.2019YFA0110600) National Natural Science Foundation of China(Grant Nos.81970916 and 81671031).
  • 相关文献

参考文献9

二级参考文献54

  • 1Minotti, G.; Menna, P.; Salvatorelli, E.; Cairo, G.; Gianni, L. Anthracyclines: Molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol. Rev. 2004, 56, 185-229.
  • 2Holohan, C.; Van Schaeybroeck, S.; Longley, D. B.; Johnston, P. G. Cancer drug resistance: An evolving paradigm. Nat. Rev. Cancer 2013, 13, 714-726.
  • 3Wiemik, P. H. Anthracyclines: Current status and new development. Academic Press, NY 1980.
  • 4Chatterjee, K.; Zhang, J. Q.; Honbo, N.; Karliner, J. S. Doxorubicin cardiomyopathy. Cardiol. 2010, 115, 155-162.
  • 5Szakacs, G.; Paterson, J. K.; Ludwig, J. A.; Booth-Genthe,C.; Gottesman, M. M. Targeting multidrug resistance in cancer. Nat. Rev. Drug Discov. 2006, 5, 219-234.
  • 6Gottesman, M. M.; Fojo, T.; Bates, S. E. Multidrug resistance in cancer: Role of atp-dependent transporters. Nat. Rev. Cancer 2002, 2, 48-58.
  • 7Aller, S. G.; Yu, J.; Ward, A.; Weng, Y.; Chittaboina, S.; Zhuo, R.; Harrell, P. M.; Trinh, Y. T.; Zhang, Q.; Urbatsch,1.L. et al. Structure of p-glycoprotein reveals a molecular basis for poly-specific drug binding. Science 2009, 323, 1718-1722.
  • 8Bums, J. S.; Abdallah, B. M.; Guldberg, P.; Rygaard, J.; Schroder, H. D.; Kassem, M. Tumorigenic heterogeneity in cancer stem cells evolved from long-term cultures of telomerase-immortalized human mesenchymal stem cells. Cancer Res. 2005, 65, 3126-3135.
  • 9Peer, D.; Karp, J. M.; Hong, S.; Farokhzad, O. C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2007, 2, 751-760.
  • 10Hughes, B. Antibody-drug conjugates for cancer: Poised to deliver? Nat. Rev. Drug Discov. 2010, 9, 665-667.

共引文献68

同被引文献19

引证文献5

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部