期刊文献+

基于自适应免疫优化的污水处理过程控制

Intelligent Control of Wastewater Treatment Processes Based on Adaptive Immune Optimization
下载PDF
导出
摘要 为解决污水处理过程控制中能耗过高、出水水质差的问题,提出一种基于自适应免疫优化(AIOIC)的智能控制系统。设计分层控制策略,采用基于奇异值分解的快速在线自组织模糊神经网络(SVDFNN)构建污水处理能耗和出水水质模型。采用自适应混合免疫优化算法,获得最佳的溶解氧和硝态氮设定值。利用底层的自组织递归模糊神经网络控制器跟踪该优化设定值。结果表明:所提出的免疫优化智能控制策略不仅能满足出水水质标准,而且能显著降低污水处理能耗。 In order to solve the problems of excessive energy consumption and excessive effluent quality in wastewater treatment process control,an intelligent control system based on adaptive immune optimization(AIOIC)is proposed.A hierarchical control strategy is designed,and a fast online self-organizing fuzzy neural network based on singular value decomposition(SVDFNN)is used to construct the mathematical model of wastewater treatment energy consumption and effluent quality.In order to obtain the optimal set values of dissolved oxygen and nitrate nitrogen,an adaptive hybrid evolutionary immune optimization algorithm is designed.The self-organizing recursive fuzzy neural network controller is used to track this optimal set points at the bottom layer.The results show that the proposed immune optimization intelligent control strategy can not only meet the effluent quality standard,but also significantly reduce the energy consumption of wastewater treatment process.
作者 李霏 苏中 Li Fei;Su Zhong(School of Automation,Beijing Information Science&Technology University,Beijing 100192,China;Beijing Jingxinke High-end Information Industry Technology Research Institute Co.Ltd,Beijing 100192,China;Faculty of Information Technology,Beijing University of Technology,Beijing 100124,China)
出处 《系统仿真学报》 CAS CSCD 北大核心 2021年第12期3012-3020,共9页 Journal of System Simulation
基金 National Key Research and Development Program(2020YFC1511702) National Natural Science Foundation(61771059,619710480,62003185) Beijing Science and Technology Project(Z191100001419012)。
关键词 污水处理 自组织模糊神经网络 免疫多目标优化 智能控制系统 能耗 wastewater treatment process self-organization fuzzy neural network immune multi-objective optimization intelligent control system energy consumption
  • 相关文献

参考文献5

二级参考文献8

共引文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部