期刊文献+

Estimation of buoy drifting based on adaptive parameter-varying time scale Kalman filter 被引量:3

原文传递
导出
摘要 To solve Kalman filter with dynamic time scale problem,an adaptive parameter-varying time scale kalman filter(APVTS-KF)is designed.An adaptive mechanism for choosing the covariance of state noise is designed.APVTS-KF is used to estimate the buoy drifting trajectory with different report intervals.Position drifting data of four buoys are used to test the proposed algorithm.The influence of report interval,drifting distance,adaptive factor and noise covariance are analysed and compared.The experimental results and error analysis show that APVTS-KF is better than other algorithms in trajectory estimation.Thus,Kalman filtering can be used for accurate trajectory estimation in the actual situation of buoy drifting with dynamic time intervals.
出处 《Journal of Control and Decision》 EI 2021年第3期353-362,共10页 控制与决策学报(英文)
基金 This work was supported in part by National Natural Science Foundation of China[grant number 51579114] Fujian Provincial Natural Science Foundation Projects[grant number 2018J05085] Research and Cultivation Fund for high level subject of transportation engineering of Jimei University[grant number 202003].
  • 相关文献

参考文献4

二级参考文献15

共引文献35

同被引文献53

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部