期刊文献+

基于自适应低秩稀疏分解的超声缺陷回波检测方法

Ultrasonic Defect Echo Identification Based on Adaptive Low-Rank Sparse Decomposition
下载PDF
导出
摘要 超声无损探伤在金属材料微小缺陷检测中有着广泛的应用,但采集的回波信号通常受到噪声干扰甚至完全被噪声掩盖,为了辨别被噪声干扰的缺陷反射信号,提出了一种基于自适应低秩矩阵分解的超声缺陷回波检测方法。首先对原信号进行短时傅里叶变换并提取幅度谱和相位谱,引入基于误差重建的背景矩阵秩估计方法,用于估计低秩稀疏分解所需的低秩度参数。然后通过低秩稀疏分解将幅度谱分解为低秩、稀疏和噪声三部分,舍弃噪声部分。最后使用时频掩蔽分离出缺陷信号幅度谱并运用逆短时傅里叶变换获得回波信号。用本文提出的方法分别对仿真和实测信号进行处理,结果表明该方法在缺陷回波检测方面是有效的。 Ultrasonic nondestructive detection has been widely used in minor defect of metallic materials detecting,but the echo signal is always disturbed by noise.In order to identify the defect echo contaminated by noise,a method to detect defects based on adaptive low-rank sparse decomposition is proposed.Firstly,the short time Fourier transform(STFT)is performed on the original signal to obtain the amplitude and phase spectra,and a rank approximation method based on error reconstruction is adopted to estimate the parameter required by the decomposition algorithm.Then,through the low-rank sparse decomposition,the amplitude spectra is decomposed into the low-rank,sparse and noise part,and the noise part is discarded.Finally,the binary time-frequency mask is used to fuse the low-rank and sparse part,in which the amplitude spectra of defect signal is identified.Through the inverse STFT,the amplitude spectra could be transformed to the time-domain,and the corresponding defect echo is acquired.Experimental results show the effectiveness of proposed method in defect echo identification.
作者 周航锐 孙坚 徐红伟 缪存坚 ZHOU Hangrui;SUN Jian;XU Hongwei;MIAO Cunjian(College of Mechanical and Electrical Engineering,China Jiliang University,Hangzhou Zhejiang 310018;Zhejiang Provincial Special Equipment Inspection And Research Institute,Hangzhou Zhejiang 310012,China)
出处 《传感技术学报》 CAS CSCD 北大核心 2021年第11期1495-1501,共7页 Chinese Journal of Sensors and Actuators
基金 浙江省质量技术监督系统科研计划项目(20160122)。
关键词 超声探伤 回波检测 低秩稀疏分解 信号降噪 ultrasonic NDT echoes detection low-rank sparse decomposition signal de-noising
  • 相关文献

参考文献9

二级参考文献77

  • 1朱志宇,姜长生,张冰,刘维亭.基于混沌理论的微弱信号检测方法[J].传感器技术,2005,24(5):65-68. 被引量:16
  • 2李书,陈益.超声探测弱信号提取方法[J].振动.测试与诊断,2006,26(1):33-36. 被引量:6
  • 3黄贤源,隋立芬,范澎湃.几种最优滤波方法的分析和比较[J].测绘工程,2007,16(3):35-39. 被引量:12
  • 4闫润强,朱贻盛.基于定量递归分析的清浊音判决[J].电子与信息学报,2007,29(7):1703-1706. 被引量:10
  • 5Waters A E, Sankaranarayanan A C, Baraniuk R. SpaRCS: Recovering Low-Rank and Sparse Matrices From Compressive Measurements [C]. Advances in Neural Information Processing Systems, 2011: 1089-1097.
  • 6Needell D, Tropp J A. Cosamp: iterative signal recovery from incomplete and inaccurate samples[J]. Appl Comput Harmon Anal, 2009, 26(3): 301-321.
  • 7Guo H, Qiu C, Namrata V. An online algorithm for separating sparse and low-dimensional signal sequences from their sum[J]. IEEE Transactions on Signal Processing, 2014, 62(16): 4284-4296.
  • 8Li L, Li H, Li T, et al.. Infrared small target detection in compressive domain[J]. Electron Lett, 2014, 50(7): 510-512.
  • 9Zheng C, Li H. Small infrared target detection based on harmonic and sparse matrix decomposition[J]. Opt Eng, 2013, 52(6): 66401- 66410.
  • 10Gu Y, Wang C, Liu B, et al.. A kernel-based nonparametric regression method for clutter removal in infrared small-target detection applications[J]. IEEE Geosci Remote Sens Lett, 2010, 7(3): 469-473.

共引文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部