期刊文献+

基于核密度估计的三维非等距模型簇的对应关系计算方法 被引量:1

Correspondence calculation method of three-dimensional non-isometric model cluster based on kernel density estimation
下载PDF
导出
摘要 针对三维非等距模型簇的一致对应关系计算问题,提出了一种基于核密度估计的三维非等距模型簇对应关系计算方法。首先引入离散时间演化过程描述符(DEP)提取三维模型表面的特征描述符,得到不同区域的不同分布特征;其次通过核密度估计建立非等距模型间的映射关系;最后利用弹性网罚函数对非等距模型簇映射关系进行凸优化,从而得到更准确的三维非等距模型簇点到点对应关系。实验结果表明,利用时变描述符与核密度估计相结合的方法计算非等距模型簇的对应关系,在一定程度上减小了模型簇一致对应的测地错误,与Aubry的算法比较,测地错误平均下降至0.054。该基于核密度估计的匹配算法与使用函数映射或随机森林函数的方法相比,能构建出更为准确的非等距模型簇一致对应关系。 Aiming at the correspondence calculation problem of 3 D non-isometric model cluster,a new method for the correspondence calculation of 3 D non-isometric model cluster based on kernel density estimation was proposed. Firstly,the feature descriptors on the surface of the three-dimensional model were obtained by Discrete-time Evolution Process(DEP)descriptor. Secondly,the correspondence between non-isometric models was established by kernel density estimation.Finally,the penalty function of the elastic net was used to conduct convex optimization for the mapping correspondence between non-isometric models and obtain a more accurate point-to-point correspondence of the 3 D non-isometric model cluster. The experimental results show that the correspondence of the non-isometric model cluster is calculated by combining DEP descriptor with kernel density estimation,which can reduce the geodetic error of correspondence to a certain extent.Compared with Aubry’s algorithm,the geodetic error dropped to 0. 054 on average. Compared with the functional maps and random forests,the matching algorithm based on kernel density estimation in this paper can obtain more accurate correspondence between non-isometric model cluster.
作者 雷鸣 马荣 赵丽 赵晓寒 LEI Ming;MA Rong;ZHAO Li;ZHAO Xiaohan(Unit 32269 of the Chinese People's Liberation Army,Lanzhou Gansu 730000,China)
机构地区 中国人民解放军
出处 《计算机应用》 CSCD 北大核心 2021年第S02期234-240,共7页 journal of Computer Applications
关键词 非等距模型 离散时间演化过程描述符 模型蔟 核密度估计 弹性网罚函数 non-isometric model Discrete-time Evolution Process(DEP)descriptor model cluster kernel density estimation elastic net penalty function
  • 相关文献

参考文献3

二级参考文献15

  • 1Van Kaick O, Zhang H, Hamameh G, et al. A survey on shape correspondence [ J ]. Computer Graphics Forum, 2011, 30 ( 6 ) : 1681-1707. [DOI: 10. llll/j. 1467-8659. 2011. 01884. x].
  • 2Alexa M. Recent advances in mesh morphing [ J ]. Computer Graphics Forum, 2002, 21(2): 173-198. [DOI: 10. 1111/ 1467-8659. 00575 ].
  • 3Golovinskiy A, Funkhouser T. Consistent segmentation of 3D models[ J ]. Computers & Graphics, 2009, 33 ( 3 ) : 262-269. [DOI: 10. 1016/j. cag. 2009. 03. 010 ].
  • 4Kilian M, Mitran N J, Pottmann H. Geometric modeling in shape space[ J]. ACM Transactions on Graphics, 2007,26(3) : #64. [ DOI : 10.1145/1276377. 1276457 ].
  • 5Jain V, Zhang H. A spectral approach to shape-based retrieval of articulated 3D models [J]. Computer-Aided Design, 2007, 39 (5) : 398-407. [ DOI : 10. 1016/j. cad. 2007.02. 009 ].
  • 6Schreiner J, Asirvatham A, Praun E, et al. Inter-surface map- ping[J]. ACM Transactions on Graphics, 2004, 23 (3): 870- 877. [DOI: 10. 1145/1015706. 1015812].
  • 7Ruggeri M R, Patan G, Spagnuolo M, et al. Spectral-driven i- sometry-invariant matching of 3D shapes[ J]. International Jour- nal of Computer Vision, 2010, 89 (2-3) : 248-265. [DOI : 10. 1007/s11263-009-0250-0 ].
  • 8Ovsjanikov M, Sun J, Guibas L. Global intrinsic symmetries of shapes[ J]. Computer Graphics Forum, 2008, 27 (5) : 1341- 1348. [DOI : 10.1111/j. 1467-8659. 2008. O1273. x ].
  • 9Sahillioglu Y, Yemez Y. Coarse-to-fine combinatorial matching for dense isometric shape correspondence [ J ]. Computer Graph- ics Forum, 2011,30(5) : 1461-1470. IDOl: 10. llll/j. 1467- 8659. 2011. 02020. x].
  • 10Sun J, Ovsjanikov M, Guibas J. A concise and provably informa- tive multi-scale signature based on heat diffusion [ J ]. Computer Graphics Forum, 2009, 28(5): 1383-1392. [DOI: 10. 1111/ j. 1467-8659. 2009. 01515. x].

共引文献15

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部