期刊文献+

Comparison of dimension reduction methods for DEA under big data via Monte Carlo simulation

原文传递
导出
摘要 Data with large dimensions will bring various problems to the application of data envelopment analysis(DEA).In this study,we focus on a“big data”problem related to the considerably large dimensions of the input-output data.The four most widely used approaches to guide dimension reduction in DEA are compared via Monte Carlo simulation,including principal component analysis(PCA-DEA),which is based on the idea of aggregating input and output,efficiency contribution measurement(ECM),average efficiency measure(AEC),and regression-based detection(RB),which is based on the idea of variable selection.We compare the performance of these methods under different scenarios and a brand-new comparison benchmark for the simulation test.In addition,we discuss the effect of initial variable selection in RB for the first time.Based on the results,we offer guidelines that are more reliable on how to choose an appropriate method.
出处 《Journal of Management Science and Engineering》 2021年第4期363-376,共14页 管理科学学报(英文版)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部