摘要
分位数回归是对数据进行分析与预测的有效方法.由于分位数回归的损失函数具有非光滑性,有关分位数回归的计算问题仍面临着一些挑战.本文通过从罚分位数回归的对偶问题出发基于交替方向乘子法(Alternating Direction Method of Multipliers,简称ADMM)求解罚分位数回归问题.并在一些温和的条件下,给出对偶交替方向乘子法(dual ADMM,简称dADMM)的全局收敛性及局部线性收敛速度.数值试验验证了该算法的有效性.
Quantile regression is an effective method for data analysis and prediction. Due to the non-smoothness of the loss function of quantile regression, the computation of quantile regression problems still faces some challenges. This paper adopts a dual alternating direction method of multipliers to solve the penalized quantile regression. This paper also presents the global convergence and the local linear convergence rate for the algorithm under some mild conditions. Numerical experiments demonstrate the effectiveness of the algorithm.
作者
赵宁宁
王承竞
Zhao Ningning;Wang Chengjing(School of Mathematics,Southwest Jiaotong University,Chengdu 611731,China;National Engineering Laboratory of Integrated Transportation Big Data Application Technology,Southwest Jiaotong University,Chengdu 611731,China)
出处
《数值计算与计算机应用》
2022年第1期38-48,共11页
Journal on Numerical Methods and Computer Applications
关键词
分位数回归
增广拉格朗日函数方法
交替方向乘子法
quantile regression
augmented Lagrangian function method
alternating direction method of multipliers