摘要
本文以中部地区为例进行实证分析,选取2009~2019年中部六省9种主要的工业能源消费量进行碳排放计算。通过Tapio脱钩模型、LMDI指数分解法与熵值法相结合的方式,对中部六省工业能源碳排放与工业经济的发展关系及影响因素进行探索。研究发现,现阶段,中部六省碳排放量增速减缓,工业经济增长趋于平稳。且中部六省整体呈现出从弱脱钩向强脱钩发展的变化趋势。与此同时,中部六省实现最佳脱钩状态的顺序为:河南>湖北>江西>湖南>安徽>山西。经熵值法优化后得出,能源消费效应是促进碳排放最主要的影响因素,而能源结构效应是促进碳减排的主要驱动因素。因此,依靠优化能源结构和提高能源效率的方式具有较大的潜力促进中部六省节能减排。
This paper takes the central region as an example of empirical analysis.CO_(2) emissions from nine major industrial energy use in the six central provinces from 2009 to 2019 have been calculated.Using the Tapio decoupling model,the LMDI index decomposition method,and the entropy method,this paper examines the relationship between industrial energy and carbon emis⁃sions from industrial economic development and their influencing factors in the six central provinces.According to the survey,the growth rate of CO_(2) emissions in the six central provinces is currently slowing down,and industrial economic growth tends to be sta⁃ble.Six provinces in central China have shown a trend from weak decoupling to strong decoupling.At the same time,the optimal decoupling status for the six central provinces is Henan>Hubei>Gangnam>Hunan>Anhui>Shanxi.After optimization by the entropy method,it can be concluded that the energy consumption effect is the most important factor for carbon emissions and the energy structural effect is the main driving factor for reducing carbon emissions.Therefore,optimizing the energy structure and improving energy efficiency,have great potential to promote energy conservation and emission reduction in the six central provinces.
作者
戴胜利
张维敏
Dai Shengli;Zhang Weimin(School of Public Administration,Central China Normal University,Wuhan 430079,China)
出处
《工业技术经济》
北大核心
2022年第4期152-160,共9页
Journal of Industrial Technological Economics
基金
国家社会科学重点项目“跨域生态环境整体性协作治理模式研究”(项目编号:18AZD004)。
关键词
能源碳排放
能源消费
脱钩模型
LMDI
对数指数分解法
熵值法
工业经济增长
energy carbon emissions
energy consumption
decoupling model
LMDI index decomposition method
entro⁃py method
industrial economic growth