期刊文献+

人群环境中基于深度强化学习的移动机器人避障算法 被引量:24

Obstacle Avoidance Algorithm for Mobile Robot Based on Deep Reinforcement Learning in Crowd Environment
原文传递
导出
摘要 为了控制移动机器人在人群密集的复杂环境中高效友好地完成避障任务,本文提出了一种人群环境中基于深度强化学习的移动机器人避障算法。首先,针对深度强化学习算法中值函数网络学习能力不足的情况,基于行人交互(crowd interaction)对值函数网络做了改进,通过行人角度网格(angel pedestrian grid)对行人之间的交互信息进行提取,并通过注意力机制(attention mechanism)提取单个行人的时序特征,学习得到当前状态与历史轨迹状态的相对重要性以及对机器人避障策略的联合影响,为之后多层感知机的学习提供先验知识;其次,依据行人空间行为(human spatial behavior)设计强化学习的奖励函数,并对机器人角度变化过大的状态进行惩罚,实现了舒适避障的要求;最后,通过仿真实验验证了人群环境中基于深度强化学习的移动机器人避障算法在人群密集的复杂环境中的可行性与有效性。 To control mobile robots to efficiently perform obstacle avoidance in crowded and complex environments,a mobile robot obstacle avoidance algorithm based on deep reinforcement learning in the human-robot integration environment is proposed.First,in response to the lack of learning capability of the value network of deep reinforcement learning algorithms,the value function network is improved based on crowd interaction.The crowd information is exchanged through the angel pedestrian grid.The temporal characteristics of a single pedestrian are then extracted through an attention mechanism,which learns the relative importance of historical trajectory state and joint impact on the obstacle avoidance strategy of the robot,providing a first step for the subsequent learning of the multilayer perceptron.Next,a reward function was developed for reinforcement learning based on human spatial behavior.The state where the robot angle changes significantly is punished to achieve the requirements of comfortable obstacle avoidance.Finally,the feasibility and effectiveness of the proposed algorithm in crowded and complex environments are verified through simulation experiments.
作者 孙立香 孙晓娴 刘成菊 靖文 SUN Lixiang;SUN Xiaoxian;LIU Chengju;JING Wen(Institute of Intelligent Manufacturing,Yancheng Polytechnic College,Yancheng 224005,China;Tongji Artifical Intelligence Research Institute,Suzhou 215131,China;School of Electronics and Information Engineering,Tongji University,Shanghai 201804,China)
出处 《信息与控制》 CSCD 北大核心 2022年第1期107-118,共12页 Information and Control
基金 国家重点研究开发计划(2016YFD0700905) 2020年江苏省产学研合作项目(BY2020338) 2020年江苏省大学生创新创业训练计划项目(202013752028Y)。
关键词 深度强化学习 人机共融 行人空间行为 移动机器人避障 deep reinforcement learning human-robot integration human spatial behavior obstacle avoidance for mobile robot
  • 相关文献

参考文献5

二级参考文献44

  • 1涂晓嫒.人工鱼-计算机动画的人工生命方法[M].北京:清华大学出版社,2001..
  • 2J Van den berg, M Lin, D Manocha. Reciprocal velocity obstacles for realtime muhi-agent navigation[ C]. Proc. of IEEE Conference on Robotics and Automation, 2008 : 1928-1935.
  • 3J Maim, B Yersin, D Thalmann. Unique Character Instances for Crowds[ J]. IEEE Computer Graphics and Applications, November, 2009,29(6) :82-90.
  • 4C W Reynolds. Flocks, Herds, and Schools: A Distributed Behavioral Model[ C ]. SIGGRAPH '87 Proceedings of the 14th annual conference on Computer graphics and interactive techniques, 1987:25-34.
  • 5Yu Q X. , D Terzopoulos. A Decision Network Framework for the Behavioral Animation of Virtual Humans [ C ]. Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on Computer animation, 2007 : 119-128.
  • 6J Ondrej, J Pettre. Anne-Helene Olivier St ephane Donikian Golaem S. A. A Synthetic-Vision Based Steering Approach for Crowd Simulation [ J ]. ACM Transactions on Graphics. 2010,29 (4) :Article No. 123.
  • 7A Treuille, S Cooper, Z Popivic. Continuum Crowds[ J]. ACM Transactions on Graphics, 2006,25 (3) : 1160-1168.
  • 8F Durupinar, N Pelechano, J Allbeck, N Badler. The Impact of the OCEAN Personality Model on the Perception of Crowds [ J ]. IEEE Computer Graphics and Applications, 2011,31 ( 3 ) : 22 - 31.
  • 9S J Guy, SKim, M C Lin, D Manocha. Simulating Heterogeneous Crowd Behaviors Using Personality Trait Theory [ C ]. Proceedings of the 2011 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 2011:43-55.
  • 10田国会,李晓磊,赵守鹏,路飞.家庭服务机器人智能空间技术研究与进展[J].山东大学学报(工学版),2007,37(5):53-59. 被引量:37

共引文献177

同被引文献215

引证文献24

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部