期刊文献+

Recent advances in the synthesis of non-carbon two-dimensional electrode materials for the aqueous electrolyte-based supercapacitors 被引量:2

原文传递
导出
摘要 Supercapacitors(SCs) with high power density and long cycling span life are demanding energy storage devices that will be an attractive power solution to modern electronic and electrical applications. Numerous theoretical and experimental works have been devoted to exploring various possibilities to increase the functionality and the specific capacitance of electrodes for SCs. Non-carbon two-dimensional(2D)materials have been considered as encouraging electrode candidates for their chemical and physical advantages such as tunable surface chemistry, high electronic conductivity, large mechanical strength, more active sites, and dual non-faradaic and faradaic electrochemical performances. Besides, these 2D materials also play particular roles in constructing highway channels for fast ion diffusion. This concise review summarizes cutting-edge progress of some representative 2D non-carbon materials for the aqueous electrolyte-based SCs, including transition metal oxides(TMOs), transition metal hydroxides(TMHs), transition metal chalcogenides(TMCs), MXenes, metal-organic frameworks(MOFs) and some emerging materials. Different synthetic methods, effective structural designs and corresponding electrochemical performances are reviewed in detail. And we finally present a detailed discussion of the current intractable challenges and technical bottlenecks, and highlight future directions and opportunities for the development of next-generation high-performance energy storage devices.
出处 《Chinese Chemical Letters》 SCIE CAS CSCD 2021年第12期3733-3752,共20页 中国化学快报(英文版)
基金 financial support from National Natural Science Foundation of China (No. 21671173) the Independent Designing Scientific Research Project of Zhejiang Normal University (No. 2020ZS03) Zhejiang Provincial Ten Thousand Talent Program (No. 2017R52043)。
  • 相关文献

同被引文献3

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部