摘要
为解决选择性催化还原(SCR)脱硝过程中存在的较强不确定性问题,在不改变原有控制系统的基础上,提出将分数阶PI^(λ)D^(μ)控制应用到SCR脱硝控制系统中。为获取分数阶PI^(λ)D^(μ)控制器参数的最优组合,提出一种带协方差自适应矩阵自适应进化策略(CMA-ES)采样器的Optuna优化算法,并用该算法对分数阶PI^(λ)D^(μ)控制器的参数进行寻优。结果表明:相比于传统最优PID控制方案,优化后的分数阶PI^(λ)D^(μ)控制器具有更好的设定值跟踪能力、抗干扰能力及鲁棒性。
In order to solve the problem of strong uncertainty in the selective catalytic reduction(SCR) denitration process, it was proposed to apply the fractional PI^(λ)D^(μ)control to the control of the SCR denitration system without changing the original control system. An Optuna optimization algorithm with a covariance matrix adaptive evolution strategy(CMA-ES) sampler was proposed to optimize the parameters of the fractional PI^(λ)D^(μ)controller, and the optimal combination of the parameters of the fractional PI^(λ)D^(μ)controller was obtained. Results show that the optimized fractional PI^(λ)D^(μ)controller has better set point tracking ability, anti-interference ability and robustness compared with the traditional optimal PID control scheme.
作者
黄宇
高珊
李其贤
丁鹏
王东风
申朋宇
HUANG Yu;GAO Shan;LI Qixian;DING Peng;WANG Dongfeng;SHEN Pengyu(Department of Automation,North China Electric Power University,Baoding 071003,Hebei Province,China;Department of Power Engineering,Baoding Technical College of Electric Power,Baoding 071051,Hebei Province,China)
出处
《动力工程学报》
CAS
CSCD
北大核心
2022年第2期122-128,共7页
Journal of Chinese Society of Power Engineering
基金
中央高校基本科研业务费专项资金资助项目(2019MS099)。