期刊文献+

交易费用影响下带扰动对偶模型的最优分红与注资策略 被引量:1

Optimal dividend and capital injection strategies for a perturbed dual model with transaction costs
下载PDF
导出
摘要 考虑带扰动的对偶风险模型的最优分红与注资控制问题,分红与注资都带有比例费用,同时分红还带有固定费用,保险公司的目标为最大化期望折现分红与折现注资之差.当收入额满足指数分布时,该优化问题可以通过随机脉冲控制方法解决,通过求解相应的拟变分不等式,得到值函数的显式解和最优双边界策略.最后通过数值算例讨论了扰动、注资与分红的交易费用对值函数和双边界的影响. The optimal dividend and capital injection control problem of dual risk model with perturbations are considered,in which dividend and capital injection have proportional costs,and dividend also has fixed costs.The objective of insurance company is to maximize the expected discounted dividends minus the discounted capital injections.When the income sizes follow an exponential distribution,the optimization problem can be solved by means of random pulse control,so the closed-form of the value function and the optimal two-barrier policy are obtained by solving the corresponding quasi-variational inequalities.Finally,numerical examples are given to study the influences of perturbation,transaction costs of capital injection and dividend on the value function and dividend boundary.
作者 谢奕 王伟 XIE Yi;WANG Wei(College of Mathematical Science,Tianjin Normal University,Tianjin 300387,China)
出处 《天津师范大学学报(自然科学版)》 CAS 北大核心 2022年第2期1-5,18,共6页 Journal of Tianjin Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(11401436) 天津市高等学校科技发展计划资助项目(JW1714).
关键词 对偶模型 分红 注资 拟变分不等式 dual model dividend capital injection quasi-variational inequality
  • 相关文献

参考文献1

二级参考文献22

  • 1Albrecher, H., Badescu, A., Landriault, D. On the dual risk model with tax payments. Insur. Math. Econ., 42(3): 1086-1094 (2008).
  • 2Avanzi, B., Gerber, H.U., Shiu, E.S.W. Optimal dividends in the dual model. Insur. Math. Econ., 41(1): 111- 123 (2007).
  • 3Avanzi, B., Gerber, H.U. Optimal dividends in the dual model with diffusion. ASTINBull., 38(2): 653-667 (2008).
  • 4Azcue, P., Muler, N. Optimal reinsurance and dividend distribution policies in the Cramr-Lundberg model. Math. Finance, 15(2): 261-308 (2005).
  • 5Bayraktar, E., Egami, M. Optimizing venture capital investments in a jump diffusion Model. Math. Oper. Res., 67(1): 21-42 (2008).
  • 6Brekke, K.A., Oksendal, B. A verification theorem for combined stochastic control and impulse control. In: Gjerde J., Decreusefond, L., Oksendal, B., Ustunel, A.S., eds. Stochastic Analysis and Related Topics 6, Birkhauser, Boston, 1998.
  • 7Cramr, H. Collective Risk Theory: a Survey of the Theory from the Point of View of the Theory of Stochastic Process. Ab Nordiska Bokhandeln, Stockholm, 1955.
  • 8Fleming, W.H., Soner, H.M. Controlled Markov processes and viscosity solutions. Springer-Verlag, New York. 2006.
  • 9Dai, H., Liu, Z., Luan, N. Optimal dividend strategies in a dual model with capital injections. Math. Oper. Res., 72(1): 129-143 (2010).
  • 10Gerber, H.U., Smith, N. Optimal dividends with incomplete information in the dual model. Insur. Math. Econ., 43(2): 227-233 (2008).

共引文献1

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部