期刊文献+

基于联邦增量学习的工业物联网数据共享方法 被引量:18

Data sharing method of industrial internet of things based on federal incremental learning
下载PDF
导出
摘要 针对工业物联网(IIOT)新增数据量大、工厂子端数据量不均衡的问题,提出了一种基于联邦增量学习的IIOT数据共享方法(FIL-IIOT)。首先,将行业联合模型下发到工厂子端作为本地初始模型;然后,提出联邦优选子端算法来动态调整参与子集;最后,通过联邦增量学习算法计算出工厂子端的增量加权,从而使新增状态数据与原行业联合模型快速融合。实验结果表明,在美国凯斯西储大学(CWRU)轴承故障数据集上,所提FIL-IIOT使轴承故障诊断精度达到93.15%,比联邦均值(FedAvg)算法和无增量公式的FIL-IIOT(FIL-IIOT-NI)方法分别提高了6.18个百分点和2.59个百分点,满足了基于工业增量数据的行业联合模型持续优化的需求。 In view of the large amount of new data in the Industrial Internet Of Things(IIOT)and the imbalance of data at the factory sub-ends,a data sharing method of IIOT based on Federal Incremental Learning(FIL-IIOT)was proposed.Firstly,the industry federation model was distributed to the factory sub-end as the local initial model.Then,the federal subend optimization algorithm was proposed to dynamically adjust the participating subset.Finally,the incremental weight of the factory sub-end was calculated through the federal incremental learning algorithm,thereby integrating the new state data with the original industry federation model quickly.Experimental results the Case Western Reserve University(CWRU)bearing failure dataset show that the proposed FIL-IIOT makes the accuracy of bearing fault diagnosis reached 93.15%,which is 6.18 percentage points and 2.59 percentage points higher than those of Federated Averaging(FedAvg)algorithm and FIL-IIOT of Non Increment(FIL-IIOT-NI)method,respectively.The proposed method meets the needs of continuous optimization of industry federation model based on industrial incremental data.
作者 刘晶 董志红 张喆语 孙志刚 季海鹏 LIU Jing;DONG Zhihong;ZHANG Zheyu;SUN Zhigang;JI Haipeng(School of Artificial Intelligence,Hebei University of Technology,Tianjin 300401,China;Hebei Data Driven Industrial Intelligent Engineering Research Center(Hebei University of Technology),Tianjin 300401,China;Tianjin Development Zone Jingnuo Data Technology Company Limited,Tianjin 300401,China;Tianjin HAVEL Branch,Tianjin Great Wall Motor Company Limited,Tianjin 300462,China;School of Materials Science and Engineering,Hebei University of Technology,Tianjin 300401,China)
出处 《计算机应用》 CSCD 北大核心 2022年第4期1235-1243,共9页 journal of Computer Applications
基金 河北省自然科学基金资助项目(F2019202062)。
关键词 工业物联网(IIOT) 联邦学习 增量学习 数据不均衡 优选子端 Industrial Internet Of Things(IIOT) federated learning incremental learning data imbalance optimized sub-end
  • 相关文献

参考文献7

二级参考文献28

共引文献74

同被引文献180

引证文献18

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部