期刊文献+

基于混合聚类算法的大学生心理健康分析 被引量:1

Mental health analysis of college students based on hybrid clstering algorithm
下载PDF
导出
摘要 为提高大学生心理健康认知水平,及时了解大学生心理健康状况,文中提出了由K-means和蚁狮优化算法混合的聚类分析算法,分析大学生心理健康情况,并将心理健康划分为正常、轻微、中等、严重和特别严重5个级别。仿真阶段以群内平均距离和F测度为指标将所提算法与传统K-means、K-meansPSO、K-meansFA、模糊K-means等进行对比,结果表明,算法整体性能优于其他方法。 In order to improve the cognitive level of College Students’mental health and timely understand their mental health status,this paper proposes a clustering analysis algorithm based on K-means and ant lion optimization algorithm to analyze the mental health of college students,and divides the mental health into five levels:normal,mild,moderate,severe and especially serious.In the simulation stage,taking the intra group average distance and F measure as indicators,the proposed algorithm is compared with traditional K-means,K-means PSO,K-means FA and fuzzy K-means.The results show that the overall performance of the proposed algorithm is better than other methods.
作者 马晓岩 MA Xiaoyan(Medical Team of the Support Department,Unit 93897 of the Chinese People’s Liberation Army,Xi’an 710000,China)
机构地区 中国人民解放军
出处 《电子设计工程》 2022年第10期22-26,共5页 Electronic Design Engineering
关键词 心理健康 聚类分析 K-MEANS 蚁狮优化算法 mental health clustering analysis K⁃means ant lion optimization algorithm
  • 相关文献

参考文献17

二级参考文献157

共引文献328

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部