摘要
群组推荐中的核心问题是群组成员的偏好融合.传统的融合策略大多属于单一型策略,在一定程度上无法更好地满足群组的整体偏好需求.为此,文中提出融合纳什均衡策略和神经协同过滤的群组推荐方法.首先,通过多层感知机获得用户与项目之间潜在特征向量的非线性交互,并联合潜在因子模型和多层感知机实现用户与项目之间的协同过滤推荐.然后,基于个体的推荐评分设计基于纳什均衡的融合策略,更好地保证群组成员的平均满意度达到最大化.最后,在KDD CUP数据集上的实验表明,文中方法在推荐模型和融合策略方面都具有较优的推荐性能.
The preference fusion of group members is the central problem of group recommendation.Most of the traditional fusion strategies are single type strategy,and they cannot meet the overall preference needs of the group to some extent.Therefore,a group recommendation method with Nash equilibrium strategy and neural collaborative filtering is proposed.The nonlinear interaction of potential feature vectors between users and items is obtained through multi-layer perceptron,and then the latent factor model and multi-layer perceptron are combined to realize collaborative filtering recommendation between users and items.Furthermore,a fusion strategy based on Nash equilibrium is designed based on individual recommendation scores to ensure maximum average satisfaction of group members.Experimental results on KDD CUP dataset show that the proposed method generates better recommendation performance than the benchmark method in terms of recommendation model and fusion strategy.
作者
李琳
王培培
杜佳
周栋
LI Lin;WANG Peipei;DU Jia;ZHOU Dong(School of Computer Science and Artificial Intelligence,Wuhan University of Technology,Wuhan 430070;School of Computer Science and Engineering,Hunan University of Science and Technology,Xiangtan 411201)
出处
《模式识别与人工智能》
EI
CSCD
北大核心
2022年第5期412-421,共10页
Pattern Recognition and Artificial Intelligence
基金
国家自然科学基金青年项目(No.62106070)
湖北省重点研发计划项目(No.2021BAA030)资助。
关键词
协同过滤
纳什均衡
神经网络
群组推荐
Collaborative Filtering
Nash Equilibrium
Neural Networks
Group Recommendation