期刊文献+

基于人工智能模型的自动容错跟踪控制研究

Research on Automatic Fault-Tolerant Tracking Control Based on Artificial Intelligence Model
下载PDF
导出
摘要 为了提高多轴运动控制系统的容错性,提出了基于强化学习算法的自动容错跟踪控制方法.该方法适用于工业生产等多代理场景中的故障跟踪控制.设计了新颖的分布式中间估计器,通过修改设计结构来增强估计方法的可行性.设计基于在线强化学习的估计策略来提高估计的性能.实验评估结果表明,提出的方法能实现良好的容错跟踪控制性能. In order to improve the fault tolerance of multi-axis motion control system,an automatic fault-tolerant tracking control method based on reinforcement learning algorithm is proposed.This method is suitable for fault tracking control in multi-agent scenarios such as industrial production.Firstly,a novel distributed intermediate estimator is designed to enhance the feasibility of the estimation method by modifying the design structure.Then,an estimation strategy based on online reinforcement learning is designed to improve the estimation performance.The experimental evaluation results show that the proposed method can achieve good fault-tolerant tracking control performance.
作者 罗锦彬 LUO Jin-bin(School of Physics and Electro-mechanical Engineering,Longyan University,Longyan 364000,China)
出处 《西安文理学院学报(自然科学版)》 2022年第2期33-37,共5页 Journal of Xi’an University(Natural Science Edition)
基金 龙岩学院横向课题(202120):“气罐恒压恒流针阀自动控制系统设计” 龙岩学院横向课题(20201130):“袋装水泥智能装车系统设计” 国家级大学生创新训练项目(202011312019) 国家级大学生创新训练项目(202011312020).
关键词 强化学习 容错跟踪 控制系统 reinforcement learning fault-tolerant tracking control system
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部