摘要
为了解决粒子滤波(PF)的无线传感器目标跟踪中样本贫化导致的精度较低的问题,提出了自适应蝙蝠粒子滤波的WSN目标跟踪方法;通过自适应的蝙蝠算法的滤波算法优化粒子重采样过程,结合最新的观测值定义粒子的适应度函数,引导粒子整体上向较高的随机区域移动;同时利用动态自适应惯性权重探索新的粒子位置更新为设计机制,引入动态适应惯性权重值,有效调整全局探索和局部探索适应能力、改善粒子贫化和局部极值问题,增加粒子群多样化从而提高跟踪性能;实验结果表明,自适应蝙蝠粒子滤波算法重采样方法可以防止粒子的退化,增加粒子的多样性,减少跟踪误差,可以减少算法的运行时间,实时追踪性能大幅提高;与BA-PF算法和PF算法相比较,IBA-PF算法的计算时间是最短的,IBA-PF算法的位置和速度的平均平方根误差最小(位置0.031 1、0.020 2、速度0.026 2、0.010 1),PF算法的跟踪精度是最低的,而IBA-PF跟踪精度较高,IBA-PF算法被证明具有良好的跟踪性能。
In order to solve the problem of the low precision caused by sample dilution in wireless sensor network(WSN)target tracking based on particle filter(PF),the WSN target tracking method based on the adaptive bat particle filter is proposed.The re-sampling process of particle filtering is optimized by the improved bat algorithm,and combined with the fitness function of the particle defined by the latest observations,the particle is guided to generally move to a higher random region.At the same time,the dynamic adaptive inertia weight is used to explore the position update for the new particle as the design mechanism,and the dynamic adaptive inertia weight value is introduced to effectively adjust the global and local exploration adaptability,improve the particle dilution and local extreme value,and increase the particle swarm diversification to improve the tracking performance.The experimental results show that the resampling method of the adaptive bat particle filter algorithm can prevent the degradation of particles,increase the diversity of particles,reduce the tracking error and the running time of the algorithm,and greatly improve the real-time tracking performance.IBAPF algorithm has the shortest computation time.Compared with the BA-PF algorithm and the PF algorithm,the IBA-PF algorithm has the smallest mean square root error of the position and velocity(position by 0.0313 m,0.0270 m,speed by 0.02021 m/s,0.0102 m/s,respectively),the PF algorithm has the lowest tracking accuracy,and the IBAPF algorithm has the highest tracking accuracy.The IBAPF algorithm is proved to have the good tracking performance.
作者
郭鲁
魏颖
GUO Lu;WEI Ying(School of Information and Control,Shenyang Institute of Technology,Fushun 113122,China)
出处
《计算机测量与控制》
2022年第6期168-175,共8页
Computer Measurement &Control
基金
辽宁省自然科学基金重点领域联合开放基金(2020-KF-11-09)
辽宁省自然科学基金(20180550418)
沈抚示范区本级科技计划项目(2020JH13)
辽宁“百千万人才工程”培养项目。
关键词
自适应蝙蝠粒子滤波算法
粒子滤波
跟踪误差
退化
adaptive bat particle filtering algorithm
particle filter
tracking error
degradation