期刊文献+

等轴细晶Ti-45Al-7Nb合金的高温机械性能及变形机制

High Temperature Mechanical Properties and Deformation Mechanism of Equiaxed Fine-Grained Ti-45Al-7Nb Alloys
原文传递
导出
摘要 采用粉末冶金法制备了双相等轴细晶Ti-45Al-7Nb(原子分数)合金,研究了该合金在温度为900、950和1000℃以及应变速率为1×10^(−3)、1×10^(−4)和5×10^(−5) s^(−1)条件下的高温力学性能,并讨论了相应的变形机理。结果表明,在高温或低应变率下,Ti-45Al-7Nb合金的极限拉伸强度逐渐降低,但伸长率显著增加。由于细小晶粒容易实现变形和协调,其伸长率明显高于粗晶粒合金。高温拉伸后,合金在裂缝处形成大量的空洞,并在裂缝前部形成大量垂直于拉伸方向的长裂纹。此外,晶界的滑动、晶粒的孪生和动态再结晶也导致了合金变形,从而提高了微观组织的延展性。 The duplex Ti-45Al-7Nb(at%)alloys with equiaxed fine grains were prepared by powder metallurgy method.The high temperature mechanical properties of the alloys at 900,950,and 1000℃ under the strain rates of 1×10^(−3),1×10^(−4),and 5×10^(−5) s^(−1) were investigated,and the corresponding deformation mechanism was also discussed.Results show that the tensile strength is decreased whereas the elongation is greatly increased at elevated temperatures or under decrescent strain rates.Since the small grains are easy to achieve deformation and coordination,the elongation of the small grain alloys is significantly higher than that of coarse grain alloys.The alloys form a large number of voids at the fractures after high temperature tension.Long cracks perpendicular to the tensile direction are formed at the front fracture.Besides,the grain boundary sliding,grain twinning,and dynamic recrystallization also lead to the deformation of alloys,thus improving the microstructure ductility.
作者 王雪峥 宋晓雷 段振鑫 陈华 Wang Xuezheng;Song Xiaolei;Duan Zhenxin;Chen Hua(Changchun University of Technology,Changchun 130012,China)
机构地区 长春工业大学
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2022年第5期1543-1549,共7页 Rare Metal Materials and Engineering
基金 National Natural Science Foundation of China(51371038)。
关键词 双相TiAl合金 等轴细晶 高温拉伸 变形机理 duplex TiAl alloy equiaxed fine grain high temperature tension deformation mechanism
  • 相关文献

参考文献6

二级参考文献50

  • 1刘峰晓,贺跃辉,刘咏,黄伯云,李智.粉末冶金制备TiAl基合金板材的研究现状及趋势[J].稀有金属材料与工程,2005,34(2):169-173. 被引量:18
  • 2[3]H. Yang, K.H. Xue and T.H. Lu, Chemical Journal of Chinese University 19(8) (1998) 1320 (in Chinese).
  • 3[4]A. Kelaidopoulou, E. Abelidou and G. Kokkinidis, Journal of Applied Electrochemistry 29(11) (1999)1255.
  • 4[5]M. Gotz and H. Wendt, Electrochimical Acta 43(24) 3637.
  • 5[6]Y.X. Liu, Functional Electrode Material (Changsha: Publisher of Central South University of Technology, 1996) (in Chinese).
  • 6[7]S. Cheng and J.L. Yuan, etc., Journal of Fuel Chemistry 19(2) (1991) 174 (in Chinese).
  • 7[8]J.B. Goodenough and A. Hamnett, J. Electroanl. Chem. 240 (1988) 133.
  • 8[9]P.K. Shen and A.C.C. Tseung, J. Electrochem. Soc. 141(11) (1994) 3082.
  • 9[10]Z.H. Liang and S. Wang, Electrochemistry 1(4) (1995) 456.
  • 10[11]Z.X. Zhang, Guangdong Non-Ferrous Metallurgy Journal 1(2) 119 (in Chinese).

共引文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部