期刊文献+

考虑多维动态特征交互的高速公路实时事故风险建模 被引量:9

Modeling Towards Freeway Real-time Traffic Crash Prediction Considering Multi-dimensional Dynamic Feature Interactions
下载PDF
导出
摘要 为探究天气和道路等特征,以及交通流、天气、道路及时间等多维动态特征之间的交互作用对实时事故风险预测模型精度的影响,本文基于京哈高速公路北京段的事故数据,以及匹配的交通传感器数据、天气数据和道路特征等,构建4个数据集,分别为只包含交通流变量,包含交通流变量、天气及时间特征变量,包含交通流变量、道路及时间特征变量,包含交通流变量、天气、道路及时间特征变量。从考虑多维动态特征的交互效应出发,基于深度交叉网络,提出一种新的实时事故风险预测模型。结果显示,本文所构建的深度交叉网络模型比其他几种实时事故风险预测方法显示出更高的精度。模型的AUC值(Area Under Curve)可达0.8562,在0.2的概率阈值下,可以正确分类84.26%的非事故数据和77.55%事故数据。结论表明,本文采用的多维动态特征交互样本条件下的深度交叉网络模型能够有效地预测高速公路交通事故,可为我国高速公路安全管理部门提供理论与技术支持。 This paper investigates the impact of weather,road features,and the dynamic mutual interactions among traffic flow,weather,road,and time on the accuracy of real-time crash risk prediction.The study developed four datasets based on the crash data,traffic sensor data,weather data,and road data collected from the Beijing section of the Beijing-Harbin Freeway.The datasets include(1) the simple traffic flow data;(2) the combined traffic flow,weather,and time data;(3) the combined traffic flow,road,and time data;(4) combined traffic flow,weather,road,and time data.By considering the interactions of multi-dimensional dynamic features,this study proposes a real-time crash risk prediction model based on the Deep & Cross Network(DCN).The results demonstrate that the DCN model achieves higher accuracy than other methods in real-time crash risk prediction.The Area Under Curve(AUC) of the model is 0.8562 and the proposed model is able to correctly classify 84.26% of non-crash data and 77.55% of crash data with the probability threshold of 0.2.The DCN model used in this study can effectively predict the occurrence of freeway crashes and collisions in time,under the condition of multi-dimensional dynamic feature interactions.The proposed method has great potential to support the freeway safety management departments of China in both theoretical and technical aspects.
作者 袁振洲 胡嫣然 杨洋 YUAN Zhen-zhou;HU Yan-ran;YANG Yang(School of Traffic and Transportation,Beijing Jiaotong University,Beijing 100044,China;School of Transportation Science and Engineering,Beihang University,Beijing 100191,China;Beijing Key Laboratory for Cooperative Vehicle Infrastructure Systems and Safety Control,Beihang University,Beijing 100191,China)
出处 《交通运输系统工程与信息》 EI CSCD 北大核心 2022年第3期215-223,共9页 Journal of Transportation Systems Engineering and Information Technology
基金 中国博士后科学基金(2021M700333) 北京市自然科学基金(J210001) 山东省高速公路技术和安全评估省级重点实验室开放基金(SH202105)。
关键词 交通工程 实时事故风险识别 深度交叉网络模型 高速公路 多维特征交互 深度学习 traffic engineering real-time traffic crash recognition deep&cross network freeway multidimensional feature interaction deep learning
  • 相关文献

参考文献3

二级参考文献17

共引文献24

同被引文献120

引证文献9

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部