期刊文献+

基于斐波那契数积分计算非等径颗粒视角系数

Fibonacci integration for evaluating view factors coefficient of non-equal-diameter particles
下载PDF
导出
摘要 热辐射是颗粒间热量传递的基本方式之一,视角系数计算的效率和精度是颗粒热辐射数值模拟中的主要难点。本文采用斐波那契数列对非等径颗粒表面进行离散,在此基础上计算视角系数,并且对z方向的积分使用非均匀变换以提高计算精度。结果表明,在具有不同球体数的粉末床中,用该方法计算的视角系数的相对误差为5%,与传统的蒙特卡洛方法相比,计算效率提升约30%。 Thermal radiation is one of the basic forms of heat transfer between particles.Computing efficiency and accuracy are the difficulties to calculate the view factors when simulating thermal radiation.In this paper,the Fibonacci number is used to discretize the surface of non-equal-diameter particles,and the view factors are calculated based on it.Subsequently,the non-uniform transformation in the Z direction is adopted to improve computational accuracy.It is indicated that a relative error of 5%for the view factor in a packed bed containing different numbers of spheres calculated is obtained by the proposed method.Compared with the traditional Monte Carlo method,the computational efficiency is improved by about 30%.
作者 包涛 高若晗 谭援强 BAO Tao;GAO Ruo -han;TAN Yuan-qiang(Institute of Manufacturing Engineering,Huaqiao University,Xiamen 361021,China;National & Local Joint Engineering Research Center for Intelligent Manufacturing Technology of Brittle Material Products,Xiamen 361021,China)
出处 《计算力学学报》 CAS CSCD 北大核心 2022年第3期389-396,共8页 Chinese Journal of Computational Mechanics
基金 国家自然科学基金(11772135) 福建省引导性项目(2019H0018)资助项目.
关键词 非等径颗粒 视角系数 斐波那契数列 非均匀变换 non-equal-diameter particles view factors fibonacci number non-uniform transformation
  • 相关文献

参考文献3

二级参考文献38

  • 1周浩生,陆继东.流化床内煤粒燃烧过程的数值模拟[J].中国电机工程学报,2004,24(12):212-217. 被引量:11
  • 2Bahrami M, Yovanovich M M, Culham J R. Effective thermal conductivity of rough spherical packed beds [J]. International Journal of Heat and Mass Transfer, 2006, 49 (19/20):3691-3701.
  • 3Kitscha W, Yovanovich M. Experiment investigation on the overall thermal resistance of sphere-flat contacts//The AIAA 12th Aerospace Sciences Meeting [C]. Washington, 1974.
  • 4ChenK, Cole J, Conger C, Draskovic J, Lohr M, Klein K, Scheidemantel T, Schiller P. Packing grains by thermal cycling [J], Nature, 2006, 442:257.
  • 5Vargas Watson L, McCarthy J J. Heat conduction in granular materials [J]. AIChE Journal, 2001, 47 (5) 1052-1059.
  • 6Cundall P A, Strack O D L. A discrete numerical model for granular assemblies [J]. Geotechnique, 1979, 29 (1): 47-65.
  • 7Tsuji Y, Kawaguchi T, Tanaka T. Discrete particle simulation of two-dimensional fluidized bed [J]. Power Technology, 1993, 77 (1): 79-87.
  • 8Zhu H P, Zhou Z Y, Yang R Y, Yu A B. Discrete particle simulation of particulate systems: a review of major application and findings [ J]. Chemical Engineering Science, 2008, 63 (23): 5728-5770.
  • 9Wu C L, Berrouk A S, Nandakurmar K. Three-dimensional discrete particle model for gas-solid fluidized beds on unstructured mesh [J]. Chemical Engineering Journal, 2009, 152 (2/3): 541-529.
  • 10Zhou Z Y, Yu A B, Zulli P. Particle scale study of heat transfer in packed and bubbling fluidized beds [J]. AIChE Journal, 2009, 55 (4): 868-884.

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部