期刊文献+

First-principles investigation of the significant anisotropy and ultrahigh thermoelectric efficiency of a novel two-dimensional Ga_(2)I_(2)S_(2) at room temperature 被引量:3

下载PDF
导出
摘要 Two-dimensional(2D)thermoelectric(TE)materials have been widely developed;however,some 2D materials exhibit isotropic phonon,electron transport properties,and poor TE performance,which limit their application scope.Thus,exploring excellent anisotropic and ultrahigh-performance TE materials are very warranted.Herein,we first investigate the phonon thermal and TE properties of a novel 2D-connectivity ternary compound named Ga2I2S2.This paper comprehensively studies the phonon dispersion,phonon anharmonicity,lattice thermal conductivity,electronic structure,carrier mobility,Seebeck coefficient,electrical conductivity,and the dimensionless figure of merit(ZT)versus carrier concentration for 2D Ga_(2)I_(2)S_(2).We conclude that the in-plane lattice thermal conductivities of Ga_(2)I_(2)S_(2) at room temperature(300 K)are found to be 1.55 W mK^(−1) in the X-axis direction(xx-direction)and 3.82 W mK^(−1)in the Y-axis direction(yy-direction),which means its anisotropy ratio reaches 1.46.Simultaneously,the TE performance of p-type and n-type doping 2D Ga2I2S2 also shows significant anisotropy,giving rise to the ZT peak values of p-type doping in xx-and yy-directions being 0.81 and 1.99,respectively,and those of n-type doping reach ultrahigh values of 7.12 and 2.89 at 300 K,which are obviously higher than the reported values for p-type and n-type doping ternary compound Sn2BiX(ZT∼1.70 and∼2.45 at 300 K)(2020 Nano Energy 67104283).This work demonstrates that 2D Ga_(2)I_(2)S_(2) has high anisotropic TE conversion efficiency and can also be used as a new potential room-temperature TE material.
出处 《International Journal of Extreme Manufacturing》 SCIE EI 2022年第2期100-112,共13页 极端制造(英文)
基金 support from the National Natural Science Foundation of China[51720105007,52076031,11602149,51806031,52176166] the Fundamental Research Funds for the Central Universities[DUT19RC(3)006] the computing resources from the Supercomputer Center of Dalian University of Technology and RWTH Aachen University under project 3357.
  • 相关文献

参考文献3

二级参考文献22

  • 1Xu, M. S.; Liang, T.; Shi, M. M.; Chen, H. Z. Graphenelike two-dimensional materials. Chem. Rev. 2013, 113, 3766-3798.
  • 2Das Sarma, S.; Adam, S.; Hwang, E. H.; Ross, E. Electronic transport in two-dimensional graphene. Rev. Mod. Phys.2011, Si, 407.
  • 3Liao, L.; Lin, Y. C.; Bao, M. Q.; Cheng, R.; Bai, J. W.; Liu, Y.; Qu, Y. Q.; Wang, K. L.; Huang, Y.; Duan, X. F. Highspeed graphene transistors with a self-aligned nanowire gate. Nature 2010, 467, 305-308.
  • 4Liu, H.; Neal, A. T.; Ye, P. D. Channel length scaling of MoS2 MOSFETs. ACS Nano 2012, 6, 8563-8569.
  • 5Castro, E. V.; Novoselov, K. S.; Morozov, S. V.; Peres, N. M. R.; Lopes dos Santos, J. M. B.; Nilsson, J.; Guinea, F.; Geim, A. K.; Castro Neto, A. H. Biased bilayer graphene: Semiconductor with a gap tunable by the electric field effect. Phys. Rev. Lett. 2007, 99, 216802.
  • 6Radisavljevic, B.; Kis, A. Mobility engineering and a metal-insulator transition in monolayer MoS2. Nat. Mater. 2013, 12, 815-820.
  • 7Popov, I.; Seifert, G.; Tomanek. D. Designing electrical contacts to MoS2 monolayers: A computational study. Phys. Rev. Lett. 2012, 108, 156802.
  • 8Kaasbjerg, K.; Thygesen, K. S.; Jacobsen, K. W. Phonon- limited mobility in n-type single layer MoS2 from first principles. Phys. Rev. B 2012, 85, 115317.
  • 9Li, X. D.; Mullen, J. T.; Jin, Z.; Borysenko, K. M.; Nardelli, M. B.; Kim, K.W. Intrinsic electrical transport properties of monolayer silicene and MoS2 from first principles. Phys. Rev. B 2013, 87, 115418.
  • 10Kaasbjerg, K.; Thygesen, K. S.; Jauho, A. P. Acoustic phonon limited mobility in twodimensional semiconductors: Deformation potential and piezoelectric scattering in monolayer MoS2 from first principles. Phys. Rev. B 2013, 87, 235312.

共引文献40

同被引文献29

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部