摘要
针对机器人路径规划对于全局最优性以及路径平滑度的性能要求,提出了一种新的基于跳点搜索的优化A^(*)算法和动态窗口法的融合算法。在跳点搜索法基础上,该融合算法设计了由曼哈顿和欧氏距离结合的新的距离评估函数对A^(*)算法进行优化,以此获取全局路径信息;然后以动态窗口法为核心,快速地规划出一条具有高平滑度的全局最优路径。仿真实验表明:新的融合算法有效解决了优化A^(*)算法规划的路径转折处曲率非连续的问题,提高了路径的平滑程度和全局最优性。最后在搭建的实际环境中进一步验证了算法的有效性,对机器人导航与路径规划有一定的应用价值。
In order to meet the performance requirements of global optimality and path smoothness in robot path planning,a new fusion algorithm of optimized A^(*) algorithm based on jump point search and dynamic window approach is proposed.Based on jump point search,the fusion algorithm designs a new distance evaluation function combining with Manhattan and Euclidean distance to optimize the A^(*) algorithm,which obtains global path information;and then the dynamic window approach as the core is taken to quickly plan a global optimal path with high smoothness.Simulation results show that the new fusion algorithm proposed can not only effectively solve the problem of non-continuous curvature and excessive turning angle at the turning points of the path planned by jump-A^(*) algorithm,but also improve the smoothness of the path and the global optimality.Finally,the effectiveness of the algorithm is further verified in the actual environment,which has a certain application value for robot navigation and path planning.
作者
姚进鑫
刘丽桑
何栋炜
陈健
王斌
徐辉
郭江峰
陈炜
YAO Jinxin;LIU Lisang;HE Dongwei;CHEN Jian;WANG Bin;XU Hui;GUO Jiangfeng;CHEN Wei(School of Electronic,Electrical Engineering and Physics,Fujian University of Technology,Fuzhou 350118,China;Technical Development Base of Industrial Integration Automation of Fujian Province,Fujian University of Technology,Fuzhou 350118,China;National Demonstration Center for Experimental Electronic Information and Electrical Technology Education,Fujian University of Technology,Fuzhou 350118,China)
出处
《重庆理工大学学报(自然科学)》
CAS
北大核心
2022年第7期197-207,共11页
Journal of Chongqing University of Technology:Natural Science
基金
福建省科技厅自然科学基金面上项目(2019J01773,2020J01878)。
关键词
机器人
路径规划
动态窗口法
跳点搜索法
A^(*)算法
robot
path planning
dynamic window method
jumping point search algorithm
A^(*) algorithm