摘要
To perform transient state control of an aero-engine,a structure that combines linear controller and min–max selector is widely adopted,which is inherently conservative and therefore limits the fulfillment of the engine potential.Model predictive control is a new control method that has vast application prospects in the field of aero-engine control.Therefore,this paper proposes a wide-range model predictive controller that can control the engine over a wide range within the flight envelope.This paper first introduces the engine parameters and the model prediction algorithm used by the controller.Then a wide-range model prediction controller with a three-layer nested structure is presented.These three layers of the structure are univariate controller,nominal point controller,and wide-range controller from inside to outside.Finally,by analyzing and verifying the effectiveness of the univariate controller for small-range variations and the wide-range model predictive controller for large-range parameter variations,it is demonstrated that the controller can schedule the controller’s output based on inlet altitude,Mach number,and lowpressure shaft corrected speed,and ensure that the limits are not exceeded.It is concluded that the designed wide-range model predictive controller has good dynamic effect and safety.
基金
supported by the National Science and Technology Major Project of China(No.J2019-I-0020-0019)。