期刊文献+

Utilization of Low-Alkalinity Cementitious Materials in Cemented Paste Backfill of Gold Mine Tailings

下载PDF
导出
摘要 The purpose of this paper was to explore the possility of using low alkalinity cementitious materials as binders,in which ground blast furnace slag and fly ash acted as a partial replacement of ordinary Portland cement,and CaSO_(4),Na_(2)SO_(4),and CaO were used as a sulfate activator and alkali activated additives,to solidify gold mine tail-ings for preparation of a green,inexpensive cemented paste backill(CPB).For this target,the effects of cement/tailings ratio,superplasticizer dosage,solid content,tailings fineness on the mechanical properties of the CPB were inves tigated.Additionally,the hydration mechanism of the CPB was analyzed based on X-ray diffraction and scanning electron microscopy results.The results showed that the fuidity of the CPB slurry could be improved by adding polycarboxylic acid superplasticizer.The unconfined compressive strength(UCS)of the CPB specimens was increased with the increase of cement/tailings ratio and solid content.Under the same experi-mental conditions,the 28 d UCS of the CPB specimens was 3.8-4.9 times higher than that of ordinary Portland cement.The softening coefficient of the CPB specimens was increased with the increasing cement/tailings ratio,ranging from 0.83 to 0.92.The shrinkage rate of the CPB specimens was decreased from 0.70%to 0.54%with the increase of cement/tailings ratio from 1:12 to 1:4 The UCS of the full tailings CPB was the highest,followed by the fine tailings CPB specimens,and the UCS of the coarse tailings CPB specimens was the lowest.The low alka-linity binder was proved to be a promising material to improve the engineering performances of the CPB.The optimal mixing ratio is 1:6 cement/tailings ratio,0.15 wt% superplastizer dosage,and 70 wt%solid content.Pre-pared by this mixing ratio,the UCS values of the CPB after 3,7,and 28 d curing ages reached 1.85,5.87,and 9.16 MPa,respectively,which were suitable as CPB for the Zhaoyuan gold mine in terms of strength requirements.
出处 《Journal of Renewable Materials》 SCIE EI 2022年第12期3439-3458,共20页 可再生材料杂志(英文)
基金 The current work was financially supported by the Key Research and Development Program of Anhui Province(202004a07020039).
  • 相关文献

参考文献4

二级参考文献35

共引文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部