摘要
Hierarchical porous carbon(HPC)from bituminous coal was designed and synthesized through pyrolysis foaming and KOH activation.The obtained HPC(NCF-KOH)were characterized by a high specific surface area(S_(BET))of 3472.41 m^(2)/g,appropriate mesopores with V_(mes)/V_(total)of 57%,and a proper amount of surface oxygen content(10.03%).This NCF-KOH exhibited a high specific capacitance of 487 F/g at 1.0 A/g and a rate capability of 400 F/g at 50 A/g based on the three-electrode configuration.As an electrode for a symmetric capacitor,a specific capacitance of 299 F/g at 0.5 A/g was exhibited,and the specific capacitance retained 96%of the initial capacity at 5 A/g after 10,000 cycles.Furthermore,under the power density of 249.6 W/kg in 6 mol/L KOH,a high energy density of 10.34 Wh/kg was obtained.The excellent charge storage capability benefited from its interconnected hierarchical pore structure with high accessible surface area and the suitable amount of oxygen-containing functional groups.Thus,an effective strategy to synthesize HPC for high-performance supercapacitors serves as a promising way of converting coal into advanced carbon materials.
基金
the financial support of National Natural Science Foundation of China(Nos.U1910201,21878208,21961024)
Shanxi Province Science Foundation for Key Program(No.201901D111001(ZD))
Inner Mongolia Natural Science Foundation(No.2018JQ05)
Inner Mongolia Autonomous Region Science&Technology Planning Project for Applied Technology Research and Development(No.2019GG261)。