期刊文献+

基于卷积神经网络的SVM分类算法在图像分类中的应用 被引量:6

Application of SVM Classification Algorithm Based on Convolutional Neural Network in Image Classification
下载PDF
导出
摘要 利用卷积神经网络强大的自学能力,训练合适的CNN来提取图像特征信息,利用RBF函数作为支持向量机的核函数,并结合粒子群算法优化SVM参数,完成图像分类的混合算法。针对乳腺组织的病理图像分类性能的实验分析,给出了混合分类算法的优越性。 Using the powerful self-learning ability of convolutional neural network,this paper trains a suitable CNN to extract feature information,selects RBF function as the kernel function of support vector machine,and completes the mixed type classification algorithm by optimizing the parameters of particle swarm optimization algorithm.Through the experimental analysis of the classification performance of pathological images of breast tissue,the advantages of the new classification algorithm are obtained.
作者 范海红 Fan Haihong(Zhejiang Post and Telecommunication College,Shaoxing Zhejiang 312000,China)
出处 《科技通报》 2022年第8期24-28,共5页 Bulletin of Science and Technology
关键词 卷积神经网络 支持向量机 粒子群算法 图像分类 convolutional neural network support vector machine particle swarm optimization image classification
  • 相关文献

参考文献4

二级参考文献27

  • 1刘元,阳春华,李勇刚,桂卫华.粒子群算法在锌电解优化调度中的应用[J].自动化与仪表,2006,21(4):11-14. 被引量:4
  • 2SIEGEL R, MA J, ZOU Z H, JEMAL A. Cancer statistics, 2014 [ J]. A Cancer Journal for Clinicians, 2014, 64(1) : 9 -29.
  • 3WEST D, MANGIAMELI P, RAMPAL R, et al. Ensemble strategies for a medical diagnosis decision support system: a breast cancer diagnosis application [ J]. European Journal of Operational Research, 2005, 162(2): 532-551.
  • 4CHEN H L, YANG B, LIU J, et al. A support vector machine clas- sifier with rough set-based feature selection for breast cancer diagno- sis [ J]. Expert System with Application, 2011, 38 (7) : 9014 - 9022.
  • 5WOLBERG W H, MANGASARIAN O L. Multisurfaee method of pattern separation for medical diagnosis applied to breast cytology [J]. Proceedings of the National Academy of Sciences, 1990, 87 (23) : 9193 -9196.
  • 6QUINLAN J R. Improved use of continuous attributes in C4.5[ J]. Journal of Artificial Intelligence Research, 1996,4(1):77 -90.
  • 7PENA-REYES C A, SIPPER M. A fuzzy-genetic approach to breast cancer diagnosis [ J]. Artificial Intelligence in Medicine, 1999, 17 (2): 131-155.
  • 8SETIONO R. Generating concise and accurate classification rules for breast cancer diagnosis [ J]. Artificial Intelligence in Medicine, 2000, 18(3): 205-219.
  • 9GOODMAN D E, BOGGESS L C, WATKINS A B. Artificial im- mune system classification of multiple-class problems [ EB/OL]. [2014-10-10]. http://citeseerx, ist. psu. edu/viewdoc/summary? doi = 10,1,1.4. 4865.
  • 10KONONENKO I. Inductive and Bayesian learning in medical diag- nosis [ J]. Applied Artificial Intelligence an Intemational Journal, 1993, 7(4): 317-337.

共引文献125

同被引文献42

引证文献6

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部