期刊文献+

LSTM混合算法在用户电量数据异常检测中的应用 被引量:5

Application of Hybrid Algorithm Based on LSTM in Anomaly Detection of User Electricity Data
下载PDF
导出
摘要 提出一种基于LSTM混合算法的用户电量数据异常检测模型。首先,提出了一种用于电力数据特征提取的检测器,该检测器通过从样本中提取抽象特征重新构造输入,并将重构误差与阈值进行比较,实现电力用户高维特征表示。其次,提出了混合CNN LSTM的电力数据异常分析网络,利用CNN叠加特征表示,并基于双层LSTM捕获电力数据上下文关系,从而有效提高模型的分类和回归能力。实验阶段,以某电力公司提供的电力数据为例,对所提模型进行验证。实验结果表明,所提模型性能最优,准确率和召回率分别为89.3%和69%。 In the paper, an anomaly detection model of user power data based on LSTM hybrid algorithm is proposed based on the study of CNN and LSTM.Firstly, a detector for feature extraction of power data is proposed.The detector extracts abstract features from samples, reconstructs the input, and compares the reconstruction error with the threshold to realize the high-dimensional feature representation of power users.Secondly, this paper proposes a hybrid cnn-lstm power data anomaly analysis network, which uses CNN superposition feature representation, and captures the context of power data based on double-layer LSTM,so as to effectively improve the classification and regression ability of the model.In the experimental stage, taking the power data provided by a power company as an example, the proposed model is verified.The results show that the performance of the proposed model is the best, and the accuracy and recall are 89.3% and 69% respectively.
作者 陈敏 Chen Min(Shenzhen Power Supply Co.,Ltd.,Shenzhen 518000,China)
出处 《单片机与嵌入式系统应用》 2022年第10期21-24,28,共5页 Microcontrollers & Embedded Systems
关键词 电力系统 异常检测 深度学习 长短时记忆 卷积神经网络 power system anomaly detection deep learning long and short term memory convolutional neural network
  • 相关文献

参考文献12

二级参考文献116

共引文献137

同被引文献73

引证文献5

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部