期刊文献+

互耦误差下环形共形阵列多参数联合估计

A Joint Multiple Parameters Estimation for Sphere Conformal Array Blind in the Presence of Mutual Coupling
下载PDF
导出
摘要 针对球面环形共形阵列互耦误差校正问题,给出了一种自校正算法。通过合理的阵元排列结构,结合共形阵列流型特点,利用互耦矩阵的Toeplitz性、子空间原理和秩损理论,通过二维搜索,实现了信源方位、极化和互耦系数的联合估计。该算法不需要任何先验信息,估计精度高、分辨力强。对参数估计的一致性进行了分析推导,并给出了参数估计的CRB(cramer-rao bound),MATLAB仿真证明该算法可以实现环形共形阵列互耦误差校正。 Aim at calibration of spherical torus conformal array antenna mutual coupling errors,a self-calibration is proposed in this paper.The special manifold characteristic of conformal array is considered here.According to the reasonable antenna layout,based on subspace theory,rank-deficiency theory and the characteristic of Toeplitz matrices,a joint DOA,polarization and array mutual coupling parameters estimation algorithm which only needs two-dimensional parameter searching is proposed.The proposed method can achieve accurate and high-resolution DOA estimation without the exact knowledge of the source polarization and mutual coupling.The theory performance is analyzed and the CRB(Cramer-Rao Bound)is derived for this algorithm.At the end of this paper,MATLAB simulation shows that this algorithm can solve the mutual coupling error correction of pherical torus conformal array antenna.
作者 胡月 高猛 侯文林 谢吉鹏 HU Yue;GAO Meng;HOU Wenlin;XIE Jipeng(Airforce Commnication NCO Academ,Dalian 116600,China)
出处 《火力与指挥控制》 CSCD 北大核心 2022年第9期59-65,共7页 Fire Control & Command Control
基金 国家自然科学基金资助项目(61871396)。
关键词 环形共形阵列 互耦系数 自校正 联合估计 spherical torus conformal array antenna mutual coupling self-calibration joint estimation
  • 相关文献

参考文献7

二级参考文献56

  • 1王布宏,王永良,陈辉,郭英.方位依赖阵元幅相误差校正的辅助阵元法[J].中国科学(E辑),2004,34(8):906-918. 被引量:40
  • 2WANGBuhong,WANGYongliang,CHENHui,GUOYing.Array calibration of angularly dependent gain and phase uncertainties with carry-on instrumental sensors[J].Science in China(Series F),2004,47(6):777-792. 被引量:17
  • 3L Josefsson, P Persson. Conformal Array Antenna Theory and Design[ M]. Hoboken, New Jersey: Wiley- IEEE Press, 2006.
  • 4P Persson. Modeling conformal array antennas of various shapes using UTD[ J]. ACES Journal, Special Issue on Computation and Modeling Techniques for Phased Array Antennas,2006,21 (3) :305 - 317.
  • 5Manikas A, Fistas N. Modeling and estimation of mutual conpiing between array elements[ A]. Proceedings of the ICASSP- 94[ C]. Adelaide,Australia: IEEE, 1994.553 - 556.
  • 6Friedlander B,Weiss A J. Direction finding in the presence of mutual coupling[ J]. IEEE Trans Antennas Propagat , 1991,39 (3) :273 - 284.
  • 7Hung E. A critical study of a serf-calibration direction-finding method for arrays[J]. IEEE Trans Antennas Propagat, 1994,42 (2) :471 - 474.
  • 8G-uo Ying, Wang Buhong. Robust direction finding for uniform circular array with mutual coupling [ A ]. Proceedings of 2005 IEEE AP-S International Symposium on Antennas and Propagation and USNC/URSI National Radio Science Meeting[ C]. Washington, DC, USA: IEEE, 2005.362 - 365.
  • 9Benjamin F,Anthony J W.Direction finding in the presence of mutual coupling[J]. IEEE Transactions on Antennas and Propagation, 1991,39(3):273-284.
  • 10Ng B C,Samson C M. Sensor-array calibration using a maximum-likelihood approach[J]. IEEE Transactions on Antennas and Propagation, 1996, 44(7):827-835.

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部