期刊文献+

混合储能平抑风电波动的功率分配策略

Power Distribution Strategy of Hybrid Energy Storage to Stabilize Wind Power Fluctuations
下载PDF
导出
摘要 为有效解决风电功率波动的问题,提出了一种基于自适应滑动平均算法与遗传算法-变分模态分解(GA-VMD)的混合储能系统风电并网控制策略。首先,根据风电并网波动标准采用自适应滑动平均算法得到混合储能功率。其次,运用遗传算法,以VMD模态分量的样本熵值为适应度函数,确定模态个数及惩罚因子的最优组合。最后,根据希尔伯特边际谱确定分界频率,低频功率与高频功率分别交由锂电池与超级电容进行平抑。算例分析表明,所提方法不仅能够合理对风电功率进行分解,而且能够实现混合储能功率最优分配,具有自适应性。 In order to effectively solve the problem of wind power fluctuation,a wind power grid-connected control strategy for hybrid energy storage system based on adaptive sliding average algorithm and genetic algorithm-variational modal decomposition(GA-VMD)is proposed.Firstly,the adaptive sliding average algorithm is used to get the hybrid energy storage power according to the wind power grid-connected fluctuation standard,and the hybrid energy storage power is obtained.Secondly,the genetic algorithm is used to determine the optimal combination of the number of modes and the penalty factor by taking the sample entropy of the VMD modal component as the fitness function.Finally,the demarcation frequency is determined according to hilbert's marginal spectrum,and the low-frequency power and high-frequency power are flattened by the lithium battery and the supercapacitorrespectively.The numerical analysis shows that the proposed method can not only reasonably decompose the wind power,but also achieve the optimal distribution of hybrid energy storage power,which is adaptive.
作者 蒋峰 薛田良 张磊 徐雄军 JIANG Feng;XUE Tianliang;ZHANG Lei;XU Xiongjun(Electric and New Energy Institute,China Three Gorges University,Yichang,Hubei 443002,China;Operation and Maintenance Department,State Grid Xiaogan Power Supply Company,Xiaogan,Hubei 442000,China)
出处 《东北电力技术》 2022年第10期49-55,共7页 Northeast Electric Power Technology
基金 国家自然科学基金项目(52007103)。
关键词 平抑风电功率 滑动平均算法 遗传算法 变分模态分解 flattening wind power sliding average algorithm genetic algorithm variational modal decomposition
  • 相关文献

参考文献13

二级参考文献139

  • 1崔万照,朱长纯,保文星,刘君华.混沌时间序列的支持向量机预测[J].物理学报,2004,53(10):3303-3310. 被引量:99
  • 2唐西胜,武鑫,齐智平.超级电容器蓄电池混合储能独立光伏系统研究[J].太阳能学报,2007,28(2):178-183. 被引量:80
  • 3史志伟,韩敏.ESN岭回归学习算法及混沌时间序列预测[J].控制与决策,2007,22(3):258-261. 被引量:47
  • 4李天云,谢家安,张方彦,李晓晨.HHT在电力系统低频振荡模态参数提取中的应用[J].中国电机工程学报,2007,27(28):79-83. 被引量:54
  • 5GB/T19963-2011风电场接人电力系统技术规定[S].2011.
  • 6Divya K C,Osoteraggrd J.Battery energy storage technology for power systems-An overview[J].ElectricPower Systems Research,2009,79(4);511-520.
  • 7WeiLi,Joos G.A power electronic interface for abattery supercapacitor hybrid energy storage system forwind applications[A].Proceedings of IEEE AnnualPower Electrics Specialists Conference[C].Rhodes,Greece,2008,1762-1768.
  • 8Ise T,Kita M,Taguchi A.A hybrid energy storagewith a SMES and secondary battery[J].IEEE Transactions on Sustainable Energy,2005,15(2):1915-1918.
  • 9Brekken T K A,Yokochi A,Von Jouanne A,et al.Optimal energy storage sizing and control for wind powerapplications[J].IEEE Transactions on SustainableEnergy,2011,2(1):69-77.
  • 10Yoshimoto K,Nanahara T,Koshimizu G.New controlmethod for regulating state-of-charge of a battery inhybrid wind power/battery energy storage system[A].Proceedings of IEEE Power Systems Conference andExposition[C].Atlanta,USA,2006,1244-1251.

共引文献386

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部