摘要
针对当前掘进机截割臂采用传统PID控制方法时,响应速度慢、摆速调节过程较长等不足,提出了一种基于GA-BP神经网络结合模糊PID的截割臂摆速控制方法。将截割臂驱动的电机电流、油缸的压力以及振动加速度等作为截割载荷的识别参数,运用GA-BP神经网络完成截割载荷信号的准确识别,为截割臂的多工况摆速控制提供依据,利用模糊PID控制器完成摆速调节,并采用Simulink建立了截割臂摆速控制仿真模型。结果表明:该控制方法能够完成截割摆速的精确控制,截割臂摆速调控过程控制在0.36 s之内,控制精度较高,响应速度较快,满足实际控制需求。
Aiming at the shortcomings of slow response speed and long swing speed adjustment process when the traditional PID control method is adopted for the cutting arm of roadheader,a swing speed control method of cutting arm based on GA-BP neural network and fuzzy PID is proposed.Taking the motor current driven by the cutting arm,the pressure of the oil cylinder and the vibration acceleration as the identification parameters of the cutting load,the GA-BP neural network is used to complete the accurate identification of the cutting load signal,which provides the basis for the multi working condition swing speed control of the cutting arm,the fuzzy PID controller is used to adjust the swing speed,and the simulation model of the swing speed control of the cutting arm is established by Simulink.The results show that the control method can complete the accurate control of the cutting swing speed,the control process of the cutting arm swing speed is controlled within 0.36 s,the control precision is high,the response speed is fast,and meets the actual control requirements.
作者
吕文渊
LYU Wenyuan(Taiyuan University,Taiyuan 030012,China)
出处
《煤炭技术》
CAS
北大核心
2022年第10期230-233,共4页
Coal Technology