期刊文献+

基于改进Mask R-CNN强风沙环境绝缘子识别 被引量:4

Insulator Recognition for Transmission Lines in Strong Wind and Sand Environment Based on Improved Mask R-CNN
原文传递
导出
摘要 由于许多输电线路处于强风沙区域,其对绝缘子的破坏尤为严重,因此对输电线路绝缘子进行检测无疑是重中之重。笔者针对现阶段强风沙环境下基于深度学习的球机远程检测精确度不高的问题进行了研究。为提高强风沙环境下绝缘子检测的精确度,提出一种基于卷积神经网络的Ms-Net绝缘子目标识别算法。Ms-Net网络为提高目标检测精确度以及缩短训练时间,将Mask R-CNN的101层卷积层改进为56层,并且在特征提取的第2至第5阶段的每个残差块前引入基于注意力机制的挤压与激励网络(SENet)结构,SENet结构对绝缘子进行特征提取时可以增强有用的特征,抑制无用的特征,提高了算法鲁棒性。对比几种主流的检测算法,经实验验证,文中Ms-Net算法在强风沙环境下检测精确度与时间得到了改善。 Many transmission lines are located in strong wind and sand area,the damage to insulators is particularly serious,the detection of transmission line insulators is undoubtedly the most important.The problem of low accuracy of ball machine remote detection based on deep learning in strong wind and sand environment is studied.In order to improve the accuracy of insulator detection in strong wind and sand environment,an MS-Net insulator target recognition algorithm based on convolution neural network is proposed.In order to improve the accuracy of target detection and shorten the training time,the 101 layer convolution layer of Mask R-CNN is improved to 56 layers,and the attention mechanism based squeeze and excitation network(SENet)structure is introduced before each residual block in the second to fifth stages of feature extraction.The SENet structure can enhance the useful features and suppress the useless features.The robustness of the algorithm is improved.Compared with several mainstream detection algorithms,the detection accuracy and time of Ms-Net algorithm are improved under strong wind and sand environment.
作者 金维旭 南新元 李晓光 杨天伟 苏比努尔·艾依来提 JIN Weixu;NAN Xinyuan;LI Xiaoguang;YANG Tianwei;Subinur·Gayrat(School of Electrical Engineering,Xinjiang University,Urumqi 830000,China;Electric Power Research Institute of State Grid Xinjiang Electric Power Co.,Ltd.,Urumqi 830011,China)
出处 《电瓷避雷器》 CAS 北大核心 2022年第6期204-210,共7页 Insulators and Surge Arresters
基金 国家自然科学基金(编号:61463047)。
关键词 强风沙 深度学习 绝缘子 目标识别 残差块 Mask R-CNN SENet strong wind and sand deep learning insulator target recognition residual block Mask R-CNN SENet
  • 相关文献

参考文献10

二级参考文献54

  • 1杨翠茹.基于纹理特征的绝缘子检测方法[J].电气技术,2010,11(7):46-48. 被引量:13
  • 2何为,陈涛,刘晓明,杨帆,姚德贵,熊东.基于紫外脉冲法的非接触式低值(零值)绝缘子在线监测系统[J].电力系统自动化,2006,30(10):69-74. 被引量:44
  • 3张广军.机器视觉[M]{H}北京:科学出版社,2005.
  • 4Irene Y. H. Gu,Unai Sistiaga,Sonja M. Berlijn,Anders Fahlstrm. Automatic Surveillance and Analysis of Snow and Ice Coverage on Electrical Insulators of Power Transmission Lines[M].Computer Vision and Graphics,2009.368-379.
  • 5胡小锋;赵辉.Visual C++/MATLAB图像处理与识别实用案例精选[M]{H}北京:人民邮电出版社,20049.
  • 6张强;王正林.精通MATLAB图像处理[M]{H}北京:电子工业出版社,2009.
  • 7Thomazini,DanielGelfuso,Maria Virginia,Correa Altafim Ruy Alberto. Classification of Polymers Insulators Hydrophobicity basead on Digital Image Processing[J].MATERIALS RESEARCH-IBERO-AMERICAN JOURNAL OF MATERIALS,2012,(15):365-371.
  • 8M. Hamed,A. El Desouky. A Computerized Inspection for the High Voltage Insulating Surfaces[J].{H}Electric Power Systems Research,2000,(2):91-95.
  • 9Thomazini, Daniel,Gelfuso, Maria Virginia,Altafim, Ruy Alberto Corrêa. Classification of polymers insulators hydrophobicity based on digital image processing[J].{H}Materials Research,2012,(3):1516-1439.
  • 10刘国海,蒋志佳.基于GA-RBF和不变矩的高压瓷瓶裂缝识别[J].控制工程,2009,16(5):561-565. 被引量:2

共引文献278

同被引文献73

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部